How artificial intelligence is changing the face of banking in India
Add Your Heading Text Here
Artificial intelligence (AI) will empower banking organisations to completely redefine how they operate, establish innovative products and services, and most importantly impact customer experience interventions. In this second machine age, banks will find themselves competing with upstart fintech firms leveraging advanced technologies that augment or even replace human workers with sophisticated algorithms. To maintain a sharp competitive edge, banking corporations will need to embrace AI and weave it into their business strategy.
In this post, I will examine the dynamics of AI ecosystems in the banking industry and how it is fast becoming a major disrupter by looking at some of the critical unsolved problems in this area of business. AI’s potential can be looked at through multiple lenses in this sector, particularly its implications and applications across the operating landscape of banking. Let us focus on some of the key artifiicial intelligence technology systems: robotics, computer vision, language, virtual agents, and machine learning (including deep learning) that underlines many recent advances made in this sector.
Industry Changes
Banks entering the intelligence age are under intense pressure on multiple fronts. Rapid advances in AI are coming at a time of widespread technological and digital disruption. To manage this impact, many changes are being triggered.
- Leading banks are aggressively hiring Chief AI Officers while investing in AI labs and incubators
- AI-powered banking bots are being used on the customer experience front.
- Intelligent personal investment products are available at scale
- Multiple banks are moving towards custom in-house solutions that leverage sophisticated ontologies, natural language processing, machine learning, pattern recognition, and probabilistic reasoning algorithms to aid skilled employees and robots with complex decisions
Some of the key characteristics shaping this industry include:
- Decision support and advanced algorithms allow the automation of processes that are more cognitive in nature
- Solutions incorporate advanced self-learning capabilities
- Sophisticated cognitive hypothesis generation/advanced predictive analytics
Surge of AI in Banking
Banks today are struggling to reduce costs, meet margins, and exceed customer expectations through personal experience. To enable this, implementing AI is particularly important. And banks have started embracing AI and related technologies worldwide. According to a survey by the National Business Research Institute, over 32 percent of financial institutions use AI through voice recognition and predictive analysis. The dawn of mobile technology, data availability and the explosion of open-source software provides artificial intelligence huge playing field in the banking sector. The changing dynamics of an app-driven world is enabling the banking sector to leverage AI and integrate it tightly with the business imperatives.
AI in Banking Customer Services
Automated AI-powered customer service is gaining strong traction. Using data gathered from users’ devices, AI-based relay information using machine learning by redirecting users to the source. AI-related features also enable services, offers, and insights in line with the user’s behaviour and requirements. The cognitive machine is trained to advise and communicate by analysing users’ data. Online wealth management services and other services are powered by integrating AI advancements to the app by capturing relevant data.
The tested example of answering simple questions that the users have and redirecting them to the relevant resource has proven successful. Routine and basic operations i.e. opening or closing the account, transfer of funds, can be enabled with the help of chatbots.
Fraud and risk management
Online fraud is an area of massive concern for businesses as they digitise at scale. Risk management at internet scale cannot be managed manually or by using legacy information systems. Most banks are looking to deploy machine or deep learning and predictive analytics to examine all transactions in real-time. Machine learning can play an extremely critical role in the bank’s middle office.
The primary uses include mitigating fraud by scanning transactions for suspicious patterns in real-time, measuring clients for creditworthiness, and enabling risk analysts with right recommendations for curbing risk.
Trading and Securities
Robotic Process Automation (RPA) plays a key role in security settlement through reconciliation and validation of information in the back office with trades enabled in the front office. Artificial intelligence facilitates the overall process of trade enrichment, confirmation and settlement.
Credit Assessment
Lending is a critical business for banks, which directly and indirectly touches almost all parts of the economy. At its core, lending can be seen as a big data problem. This makes it an effective case for machine learning. One of the critical aspects is the validation of creditworthiness of individuals or businesses seeking such loans. The more data available about the borrower, the better you can assess their creditworthiness.
Usually, the amount of a loan is tied to assessments based on the value of the collateral and taking future inflation into consideration. The potential of AI is that it can analyse all of these data sources together to generate a coherent decision. In fact, banks today look at creditworthiness as one of their everyday applications of AI.
Portfolio Management
Banks are increasingly relying on machine learning to make smarter, real-time investment decisions on behalf of their investors and clients.
These algorithms can progress across distinct ways. Data becomes an integral part of their decision-making tree, this enables them to experiment with different strategies on the fly to broaden their focus to consider a more diverse range of assets.
Banks are focussed to leverage an AI and machine learning-based technology platforms that make customised portfolio profiles of customers based on their investment limits, patterns and preferences.
Banking and artificial intelligence are at a vantage position to unleash the next wave of digital disruption. A user-friendly AI ecosystem has the potential for creating value for the banking industry, but the desire to adopt such solutions across all spectrums can become roadblocks. Some of the issues can be long implementation timelines, limitations in the budgeting process, reliance on legacy platforms, and the overall complexity of a bank’s technology environment.
To overcome the above challenges of introducing and building an AI-enabled environment. Banks need to enable incremental adoption methods and technologies. The critical part is ensuring that the transition allows them to overcome the change management/behavioural issues. The secret sauce of successful deployment is to ensure a seamless fit into the existing technology architecture landscape, making an effective AI enterprise environment.
Related Posts
AIQRATIONS
How Rise of Exponential Technologies – AI, RPA, Blockchain, Cybersecurity will Redefine Talent Demand & Supply Landscape
Add Your Heading Text Here
The current boom of exponential technologies of today is causing strong disruption in the talent availability landscape, with traditional, more mechanical roles being wiped out and paving way for huge demand for learning and design thinking based skills and professions. The World Economic Forum said in 2016 that 60% of children entering school today will work in jobs that do not yet exist.
While there is a risk to jobs due to these trends, the good news is that a huge number of new jobs are getting created as well in areas like AI, Machine Learning, Robotic Process Automation (RPA), Blockchain, Cybersecurity, etc. It is clearly a time of career pivot for IT professionals to make sure they are where the growth is.
AI and Machine Learning upending the traditional IT Skill Requirement
AI and Machine Learning will create a new demand for skills to guide its growth and development. These emerging areas of expertise will likely be technical or knowledge-intensive fields. In the near term, the competition for workers in these areas may change how companies focus their talent strategies.
At a time when the demand for data scientists and engineers will grow 39% by 2020, employers are seeking out leaders who can effectively work with technologists to ask the right questions and apply the insight to solve business problems. The business schools are, hence, launching more programs to equip graduates with the skills they need to succeed. Toronto’s Rotman School of Management, for example, last week launched a nine-month program which provides recent college graduates with advanced data management, analytical and communication skills.
According to the Organization of Economic Cooperation and Development, only 5-10% of labor would be displaced by intelligent automation, and new job creation will offset losses.
The future will increase the value of workers with a strong learning ability and strength in human interaction. On the other hand, today’s highly paid, experienced, and skilled knowledge workers may be at risk of losing their jobs to automation.
Many occupations that might appear to require experience and judgment — such as commodity traders — are being outdone by increasingly sophisticated machine-learning programs capable of quickly teasing subtle patterns out of large volumes of data. If your job involves distracting a patient while delivering an injection, guessing whether a crying baby wants a bottle or a diaper change, or expressing sympathy to calm an irate customer, you needn’t worry that a robot will take your job, at least for the foreseeable future.
Ironically, the best qualities for tomorrow’s worker may be the strengths usually associated with children. Learning has been at the centre of the new revival of AI. But the best learners in the universe, by far, are still human children. At first, it was thought that the quintessential preoccupations of the officially smart few, like playing chess or proving theorems — the corridas of nerd machismo — would prove to be hardest for computers. In fact, they turn out to be easy. Things every dummy can do like recognizing objects or picking them up are much harder. And it turns out to be much easier to simulate the reasoning of a highly trained adult expert than to mimic the ordinary learning of every baby. The emphasis on learning is a key change from previous decades and rounds of automation.
According to Pew Research, 47% of all employment opportunities will be occupied by machines within the next two decades.
What types of skills will be needed to fuel the development of AI over the next several years? These prospects include:
- Ethics: The only clear “new” job category is that of AI ethicist, a role that will manage the risks and liabilities associated with AI, as well as transparency requirements. Such a role might be imagined as a cross between a data scientist and a compliance officer.
- AI Training: Machine learning will require companies to invest in personnel capable of training AI models successfully, and then they must be able to manage their operations, requiring deep expertise in data science and an advanced business degree.
- Internet of Things (IoT): Strong demand is anticipated for individuals to support the emerging IoT, which will require electrical engineering, radio propagation, and network infrastructure skills at a minimum, plus specific skills related to AI and IoT.
- Data Science: Current shortages for data scientists and individuals with skills associated with human/machine parity will likely continue.
- Additional Skill Areas: Related to emerging fields of expertise are a number of specific skills, many of which overlap various fields of expertise. Examples of potentially high-demand skills include modeling, computational intelligence, machine learning, mathematics, psychology, linguistics, and neuroscience.
In addition to its effect on traditional knowledge workers and skilled positions, AI may influence another aspect of the workplace: gender diversity. Men hold 97 percent of the 2.5 million U.S. construction and carpentry jobs. These male workers stand more than a 70 percent chance of being replaced by robotic workers. By contrast, women hold 93 percent of the registered nurse positions. Their risk of obsolescence is vanishingly small: .009 percent.
RPA disrupting the traditional computing jobs significantly
RPA is not true AI. RPA uses traditional computing technology to drive its decisions and responses, but it does this on a scale large and fast enough to roughly mimic the human perspective. AI, on the other hand, applies machine and deep learning capabilities to go beyond massive computing to understand, learn, and advance its competency without human direction or intervention — a truly intelligent capability. RPA is delivering more near-term impact, but the future may be shaped by more advanced applications of true AI.
In 2016, a KPMG study estimated that 100 million global knowledge workers could be affected by robotic process automation by 2025.
The first reaction would be that in the back office and the middle office, all those roles which are currently handling repetitive tasks would become redundant. 47% of all American job functions could be automated within 20 years, according to the Oxford Martin School on Economics in a 2013 report.
Indeed, India’s IT services industry is set to lose 6.4 lakh low-skilled positions to automation by 2021, according to U.S.-based HfS Research. It said this was mainly because there were a large number of non-customer facing roles at the low-skill level in countries like India, with a significant amount of “back office” processing and IT support work likely to be automated and consolidated across a smaller number of workers.
Automation threatens 69% of the jobs in India, while it’s 77% in China, according to a World Bank research.
Job displacement would be the eventual outcome however, there would be several other situations and dimensions which need to be factored. Effective automation with the help of AI should create new roles and new opportunities hitherto not experienced. Those who currently possess traditional programming skills have to rapidly acquire new capabilities in machine learning, develop understanding of RPA and its integration with multiple systems. Unlike traditional IT applications, planning and implementation could be done in small patches in shorter span of time and therefore software developers have to reorient themselves.
For those entering into the workforce for the first time, there would be a demand for talent with traditional programming skills along with the skills for developing RPA frameworks or for customising the frameworks. For those entering the workforce for being part of the business process outsourcing functions, it would be important to develop capability in data interpretation and analysis as increasingly more recruitment at the entry level would be for such skills and not just for their communication or transaction handling skills.
Blockchain – A blue ocean of a New kind of Financial Industry Skillset
A technology as revolutionary as blockchain will undoubtedly have a major impact on the financial services landscape. Many herald blockchain for its potential to demystify the complex financial services industry, while also reducing costs, improving transparency to reduce the regulatory burden on the industry. But despite its potential role as a precursor to extend financial services to the unbanked, many fear that its effect on the industry may have more cons than pros.
30–60% of jobs could be rendered redundant by the simple fact that people are able to share data securely with a common record, using Blockchain
Industries including payments, banking, security and more will all feel the impact of the growing adoption of this technology. Jobs potentially in jeopardy include those involving tasks such as processing and reconciling transactions and verifying documentation. Profit centers that leverage financial inefficiencies will be stressed. Companies will lose their value proposition and a loss of sustainable jobs will follow. The introduction of blockchain to the finance industry is similar to the effect of robotics in manufacturing: change in the way we do things, leading to fewer jobs, is inevitable.
Nevertheless, the nature of such jobs is likely to evolve. While Blockchain creates an immutable record that is resistant to tampering, fraud may still occur at any stage in the process but will be captured in the record and there easily detected. This is where we can predict new job opportunities. There could be a whole class of professions around encryption and identity protection.
So far, the number of jobs created by the industry appears to exceed the number of available professionals qualified to fill them, but some aren’t satisfied this trend will continue. Still, the study of the potential impact of blockchain tech on jobs has been largely qualitative to date. Aite Group released a report that found the largest employers in the blockchain industry each employ about 100 people.