Understanding Burgeoning AI Landscape; A Perspective for PE/VC & Investment Funds
Add Your Heading Text Here
There seems to be a glaring ambiguity as to exactly what artificial intelligence (AI) is, and how the discipline of AI should be categorized. Is AI a form of analytics or is it a totally new discipline that is distinct from analytics? I firmly believe that AI is more closely related to predictive analytics and data sciences than to any other discipline. One might even argue that AI is the next generation of predictive analytics and is born out of sophistication of analytics . Additionally, AI is often utilized in situations where it is necessary to operationalize the analytics process. So, in that sense, AI is also often pushing the envelope of prescriptive, operationalized analytics. It would be a mistake to say that AI is not a form of analytics.
I’ve seen AI applied to some of the most obscure topics you can imagine, ranging from industrial energy usage all the way to finding the right GIFs. Using Artificial Intelligence to improve and create solutions to today’s pressing business and social problems is one of the defining trends of the tech world for me.
So, if you are a PE / VC entity and are looking for investment opportunity in AI space, you will have to understand what kinds of AI companies exist and how this AI practice has evolved from Analytics practice.
There are three types of AI companies — core, applied, and industry
1. Core AI Companies
Core AI companies develop technology that improves parts of the AI creation or deployment process itself. Here are a few selected parts of that process and a few companies that are innovating in each:
Data scrubbing and cleaning: Trifacta, Paxata, Wealthport, Datalogue
Modeling: Sentient, Petuum, MLJar
Deployment: Yhat, Seldon
These companies all innovate in some specific, industry-agnostic part of the AI pipeline. Some of them are specific tools, while others purport to have an entirely new approach to AI that will revolutionize how it’s done (see Geometric Intelligence circa 2015).
If you’re investing in Core AI companies, you should probably have a good understanding of how this pipeline works. If you’re founding one of these companies, you should probably have experience deploying Machine Learning and AI at scale.
2. Applied AI Companies
A bit on the more specific side, Applied AI start-ups develop technology that helps companies across different industries perform a specific task using AI. As with the above, here are some examples of those applications and a few interesting companies in each:
Analysing and understanding text: Indico, Synapsify, Lexalytics
Analysing and understanding images and videos: Clarifai, Kairos, Imagry, Affectiva, Deepomatic
Bots / Voice: Init.ai, MindMeld
While investors can get away with not having experience in one of these specific applications, founders will likely have done projects involving this stuff in the past.
The implementation of AI in this scenario corresponds to the implementation of predictive analytics. At its core, predictive analytics is, naturally, about predicting something. Who will buy? Will certain equipment break? Which price will maximize profits? Each of these questions can be addressed by following a familiar workflow – First, we identify a metric or state that we want to predict and gather historical information on that metric or state. Next, we gather additional data that we believe could be relevant to predicting our target. Then, we pass the data through one or more algorithms that attempt to find a relationship between the target and the additional data. Through this process, a model is created that produces a prediction if new data is fed to it. If a customer had this profile, how likely would she be to respond? If we priced at this point, how much profit might we expect?
The goals and steps followed within an AI process are the same. Let’s look at two examples:
Take image recognition. First, we identify a bunch of cat pictures. Then, we grab a bunch of non-cat pictures. We pass a deep learning algorithm over the images to learn to accurately predict whether an image is a cat. When provided with a new image, the model will answer with the probability that the image is a cat. Sounds a lot like predictive analytics, doesn’t it?
Let’s now consider natural language processing (NLP). We gather a wide range of statements that have specific meanings we care about. We also gather a wide range of other statements. We run NLP procedures against the data to try to tease out how to tell what is important and how to tell what is being asked. As we feed a new line of text to the process, it will identify what the point of the statement is in probabilistic terms. The NLP process will assign probabilities to various possible interpretations and send those back (think Watson playing jeopardy). This also sounds a lot like predictive analytics.
3. Industry AI Companies
The final category of ML/AI companies apply these techniques to specific business problems in specific verticals. This is undoubtedly the lion’s share of the actual number of companies being founded, and in many ways, represents the true promise of AI — solving actual and immediate problems with new techniques. Here, it’s easier to give companies as examples. The format is always “AI for ________”:
DigitalGenius: AI for customer support
Cylance: AI for cyber threat prevention
X.ai: AI for scheduling meetings
Drive.ai: AI for autonomous vehicles
The implementation of AI in this scenario corresponds to industrialized embedded analytics. A major trend today is to embed analytics into business applications so that the models are utilized in an automated, embedded, prescriptive fashion at the point of a business decision. For example, as a person navigates a web page, models are utilized to predict what offers should appear on the next page. There is no human intervention once the process is in place. The process makes offers until told to stop.
Many applications of AI today also require industrialization. For example, as an image is posted on social media, it is immediately analysed to identify who is present in the image. As I make a statement to Siri or Alexa, it attempts to determine what I said and what the best answer is. While this qualifies as a more advanced application of predictive analytics that moves into embedded, prescriptive, automated processes, it is still very much in line with how industrialized embedded analytics are being used today.
The common theme among these companies is that they take Machine Learning / AI and use it on a specific problem or space. When researching investments like this, investors should look at both the AI itself (if it works well) and the business case (whether it’s compelling). In x.ai’s case, investors need to know if the AI works, but they should also consider whether AI is the best way to solve the scheduling problem, and whether scheduling is a problem worth solving at all. With the other two types of companies, this is rarely a consideration. Founders of these types of companies can often not have AI experience and can even be non-technical (with the right supporting team and CTO, of course).
Final Word
Your journey to a fruitful AI investment will be far easier if you recognize and embrace AI as sophistication of analytics and understand the true categorization, and then task your analysts with leading the charge. Don’t cause confusion and redundancy by considering AI to be something completely different.
Related Posts
AIQRATIONS
How Startups can leverage AI to gain competitive advantage
Add Your Heading Text Here
Despite nationwide venture funding hitting a multiyear low, venture capital deployed to artificial intelligence (AI) startups has reached a record high.
Last year, VCs struck 658 deals with AI companies, nearly five times the number that signed on the dotted line four years before. To date, the market contains 2,045 AI startups and more than 17,000 market followers, with more joining by the day.
AI’s rapid rise has swept up startups and enterprises alike, including U.S. automaker Ford, which recently bought AI startup Argo for $1 billion. The acquisition cements experts’ suspicions of Ford’s coming foray into self-driving technology. Other startups — so many, in fact, that entrepreneurs need a “best of” guide — are betting heavily on bot platforms.
So while we’ve just glimpsed the tip of this innovation iceberg, it’s clear AI is no longer some nebulous technology of the future. Sixty-eight percent of marketing executives, report using AI in their operations. For a technology that only went mainstream in 2016 and barely existed four years ago, that’s a remarkable adoption rate. How, regardless of the platform you choose, can you join forward-thinking entrepreneurs and build your business with AI? Over the last few years , I have worked closely with multiple start ups across genres and ,So far, four ways stand out:
1. Get to know your next customer.
A politician wouldn’t dream of delivering a small-town stump speech to her urban constituents. Why? Because you’ve got to know your audience. The same is true for entrepreneurs. Before you broadcast your message, you need to know who you’re trying to reach.
Node, an account-based intelligence startup, uses natural language processing — a fancy term for teaching a computer to understand how we humans speak and write — to develop customer profiles. Node is crunching vast swaths of data to connect the dots between marketers and the companies they’re trying to reach.
Once you have ample customer data — Node uses data crawlers to scrape information from social media, news sites and more — pair machine learning and natural language processing models to extract sentiments from unstructured data. Then, just as senators segment constituents into demographic groups, Node uses cluster analysis to sort clients’ customers into like cohorts.
2. See how people truly use your product.
If, heaven forbid, you forgot to tag your neighbor at last week’s house party, Facebook was no doubt there to remind you of your error. How does Facebook know which of your friends you left untagged? It has gone all-in on an AI technique called convolutional neural networks.
Convolutional neural networks, which loosely model how the brain’s visual cortex interacts with the eyes, work by separating an image into tiny portions before running each of those specks through a multilayered filter. It then “sees” where each speck overlaps with other parts of the image, and through automated iterations, it puts together a full image.
Many different ways exist to apply this technology, but retail businesses can start with image classification. Try using a convolutional neural network to break down photos of your products posted online. The model can identify customer segments that frequently use your product, where they’re using it and whether they commonly pair other products with yours. Essentially, this automated image analysis can show you how your products fit into customers’ lives, allowing you to tailor your marketing materials to fit.
3. Get inside the user’s head.
Success on social media requires careful listening and quick action. When a social campaign isn’t working, it’s best to put it out of its misery quickly. On the other hand, when one strikes a chord with customers, doubling down pays dividends.
But to do so, you need real-time insights about customers’ reactions to your content. Fortunately, AI can take the emotional temperature of thousands of customers at once. Dumbstruck, a video-testing and analytics startup that I advise, has added natural language processing to its emotional analytics stack. This allows it to provide moment-by-moment insights into viewers’ reactions to media. Dumbstruck’s model grows stronger with each reaction analyzed, producing a program that perceives human emotions even better than some people can.
4. Provide affordable, always-on support.
Customer service is — or should be, according to consumers — the department that never sleeps. More than half of people, 50.6 percent to be precise, believe a business should be available 24/7 to answer their every question and concern. When asked whether businesses should be available via a messaging app, the “yes” votes jump to nearly two in three.
Fortunately, bots don’t sleep, eat or go off-script. A well-built bot can offer cost-effective, constant customer service. Of course, grooming your bot to serve customers requires front-end data — ideally hundreds of thousands of example conversations — but you can get started with a human-chatbot hybrid. With this approach, the bot answers run-of-the-mill questions, while a human takes over for the more complex ones. Then, as the data builds and the model matures, you can phase in full automation.
AI’s Impact on small businesses and startups
Small enterprises will begin to use the tried and tested platforms in innovative ways. While startups will gain a competitive edge in capturing the AI market, the larger enterprises will provide the infrastructure to startups for building innovative services. It is somewhat similar to the business model followed when the cable technology was introduced.
Startups leveraging AI technology for industry verticals, like agriculture, manufacturing or insurance are bound to be successful.
Startups can empower established insurance companies like State Farm, Allstate and Farmers with technology enabling them to become more proactive in policy planning. For instance, a new AI insurance underwriter will help to forecast natural disasters and accidents, and adjust premiums.
The predictive decision-making capabilities are more than just a novel technology. You can manage food supply chains with the help of AI. Startups could develop end-to-end farming solutions with AI analytics for reducing food waste. It will have a huge impact in tackling global issues of hunger and famine.
Whether serving as a research assistant in a large corporation, acting as a voice-activated resource in difficult medical procedures, AI is fast becoming a reality. The AI revolution will benefit new players who learn quickly to use it to their advantage. AI will be a fundamental predictive enabler helping us solve large-scale problems, and startups are poised to gain a competitive edge.
So what’s the ground level AI sentiment of Startups? – Mix of Hope & Fear
Regardless of which industry you operate, be careful that AI will affect your world in some way. Look into what is present now and how you can utilize it to gain a competitive edge.
The possibilities with AI are endless; enterprises will become efficient, intelligent and cost-effective.
Undoubtedly, the digital revolution and AI will advance to a point where it will offer real-world benefits to every business- large and small.
Mark Zuckerberg says, “We’re working on AI because we think more intelligent services will be much more useful for you to use.”
AI is relevant because of its immense power to deliver useful solutions; its other building blocks including cloud computing and superfast connectivity. But, if you want to take advantage of this novel technology you will need a reliable, secure, and continuously evolving infrastructure.