How the insurance industry can leverage AI to enhance efficiencies
Add Your Heading Text Here
This second machine age has seen the rise of artificial intelligence (AI), or intelligence that is not the result of human cogitation. AI is now ubiquitous in many commercial products, from search engines to virtual assistants.
The massive amounts and the speed at which structured and unstructured (e.g., text, audio, video, sensor) data is being generated has made speedy processing and generation of meaningful, actionable insights imperative.
The insurance industry segment has been conservative in adopting AI across the value chain, but P&C /Life/Reinsurance companies have accelerated the pace of AI adoption and initiated deployment of AI use cases across the value chain.
Here are few of the use cases leveraging AI for the insurance industry:
Personalised customer experience: redefining the value proposition
Many insurers are already in the early stages of enhancing and personalising the customer experience. Exploiting social data to understand customer needs and sentiments about products and processes (e.g., claims) are some early applications of AI.
The next stage in robo-advisor evolution is to offer better intelligence on customer needs and goal-based planning for both protection and financial products. Recommender systems and “someone like you” statistical matching will become increasingly available to customers and advisors.
Up next will be understanding of individual and household balance sheets and income statements, as well as economic, market, and individual scenarios to recommend, monitor and alter financial goals and portfolios for customers and advisors.
Automated and augmented underwriting: enhancing efficiencies
This involves automating large classes of standardised underwriting in auto, home, commercial (small and medium business), life, and group using sensor (IoT) data, unstructured text data (e.g., agent/advisor or physician notes), call centre voice data, and image data using Bayesian learning or deep learning techniques.
The industry will also model new business and underwriting process using soft robotics and simulation modeling to understand risk drivers and expand the classes of automated and augmented (i.e., human-performed) underwriting.
We will also see augmenting of large commercial underwriting and life/disability underwriting by having AI systems (based on NLP and DeepQA) highlight key considerations for human decision-makers. Personalised underwriting by a company or individual takes into account unique behaviours and circumstances.
Robo-claims adjuster
This will help build predictive models for expense management, high value losses, reserving, settlement, litigation, and fraudulent claims using existing historical data. It will also help analyse claims process flows to identify bottlenecks and streamline flow, leading to higher company and customer satisfaction.
Building a robo-claims adjuster by leveraging predictive models and building deep learning models that can analyze images to estimate repair costs can change status quo. In addition, use of sensors and IoT to proactively monitor and prevent events can reduce losses.
A claims insights platform that can accurately model and update frequency and severity of losses over different economic and insurance cycles (i.e., soft vs. hard markets) can help the industry. Carriers can apply claims insights to product design, distribution, and marketing to improve overall lifetime profitability of customers.
Emerging risks and new product innovation
Identifying emerging risks (e.g., cyber, climate, nanotechnology), analyse observable trends, determining if there is an appropriate insurance market for these risks, and developing new coverage products in response historically have been creative human endeavors.
Man and machine learning
Artificial general intelligence (AGI) that can perform any task that a human can is still a long way off. In the meantime, combining human creativity with mechanical analysis and synthesis of large volumes of data – in other words, man-machine learning (MML) – can yield immediate results.
For example, in MML, the machine learning component sifts through daily news from a variety of sources to identify trends and potentially significant signals. The human learning component provides reinforcement and feedback to the ML component, which then refines its sources and weights to offer broader and deeper content.
Using this type of MML, risk experts (also using ML) can identify emerging risks and monitor their significance and growth. MML can further help insurers to identify potential customers, understand key features, tailor offers, and incorporate feedback to refine new product introduction.
AI implications for insurers
Improving Efficiencies: AI is already improving efficiencies in customer interaction and conversion ratios, reducing quote-to-bind and FNOL-to-claim resolution times, and increasing new product speed-to market. These efficiencies are the result of AI techniques speeding up decision-making (e.g., automating underwriting, auto-adjudicating claims, automating financial advice, etc.).
Improving effectiveness: Because of the increasing sophistication of its decision-making capabilities, AI soon will improve target prospects to convert them to customers, refine risk assessment and risk-based pricing, enhance claims adjustment, and more. Over time, as AI systems learn from their interactions with the environment and with their human masters, they are likely to become more effective than humans and replace them. Advisors, underwriters, call centre representatives, and claims adjusters likely will be most at risk.
Improving risk selection and assessment: AI’s most profound impact could well result from its ability to identify trends and emerging risks, and assess risks for individuals, corporations, and lines of business. Its ability to help carriers develop new sources of revenue from risk and non-risk based information will also be significant.
Read more at: https://yourstory.com/2020/02/insurance-industry-leverage-ai-enhance-efficiencies
Related Posts
AIQRATIONS
How AI is Enabling Mitigation of Fraud in the Banking, Insurance Enterprises
Add Your Heading Text Here
The Banking and Finance sector (BFSI) is witnessing one of its most interesting and enriching phases. Apart from the evident shift from traditional methods of banking and payments, technology has started playing a vital role in defining this change.
Mobile apps, plastic money, e-wallets and bots have aided the phenomenal swing from offline payments to online payments over the last two decades. Now, the use of Artificial Intelligence (AI) in BFSI is expediting the evolution of this industry.
But as the proliferation of digital continues, the number of ways one can commit fraud has also increased. Issuers, merchants, and acquirers of credit, debit, and prepaid general purpose and private label payment cards worldwide experienced gross fraud losses of US$11.27 billion in 2012, up 14.6% over the previous year1. Fraud losses on all general purpose and private label, signature and PIN payment cards reached US$5.33 billion in United States in the same period, up 14.5%1. These are truly big numbers, and present the single-biggest challenge to the trust reposed in banks by customers. Besides the risk of losing customers, direct financial impact for banks is also a significant factor.
Upon reporting of a fraudulent transaction by a customer, the bank is liable for the transaction cost, it has to refund merchant chargeback fee, as well as additional fee. Fraud also invites fines from regulatory authorities. The recently-passed Durbin Amendment caps processing fee that can be charged per transaction, and this increases the damage caused by unexpected fraud losses. The rapidly rising use of electronic payment modes has also increased the need for effective, efficient, and real-time methods to detect, deter, and prevent fraud.
Nuances of Banking Fraud Prevention Using AI
AI enables a computer to behave and take decisions like a human being. Coined in 1956 by John McCarthy at MIT, the term AI was little known to the layman and merely a subject of interest to academicians, researchers and technologists. However, over the past few years, it is more commonly seen in our everyday lives; in our smartphones, shopping experiences, hospitals, travel, etc.
Machine Learning, Deep Learning, NLP Platforms, Predictive APIs and Image and Speech Recognition are some core AI technologies used in BFSI today. Machine Learning recognises data patterns and highlights deviations in data observed. Data is analysed and then compared with existing data to look for patterns. This can help in fraud detection, prediction of spending patterns and subsequently, the development of new products.
Key Stroke Dynamics
Key Stroke Dynamics can be used for analysing transactions made by customers. They capture strokes when the key is pressed (dwell time) and released on a keyboard, along with vibration information.
As second factor authentication is mandatory for electronic payments, this can help detect fraud, especially if the user’s credentials are compromised. Deep Learning is a new area in Machine Learning research and consists of multiple linear and non-linear transformations. It is based on learning and improving representations of data. A common application of this can be found in the crypto-currency, Bitcoin.
Adaptive Learning
Adaptive Learning is another form of AI currently used by banks for fraud detection and mitigation. A model is created using existing rules or data in the bank’s system. Incremental learning algorithms are then used to update the models based on changes observed in the data patterns.
AI instances in Insurance for Fraud Prevention
Applying for Insurance
When a customer submits their application for insurance, there is an expectation that the potential policyholder provides honest and truthful information. However, some applicants choose to falsify information to manipulate the quote they receive.
To prevent this, insurers could use AI to analyse an applicant’s social media profiles and activity for confirmation that the information provided is not fraudulent. For example, in life insurance policies, social media pictures and posts may confirm whether an applicant is a smoker, is highly active, drinks a lot or is prone to taking risks. Similarly, social media may be able to indicate whether “fronting” (high-risk driver added as a named driver to a policy when they are in fact the main driver) is present in car insurance applications. This could be achieved by analysing posts to see if the named driver indicates that the car is solely used by them, or by assessing whether the various drivers on the policy live in a situation that would permit the declared sharing of the car.
Claims Management & Fraud Prevention
Insurance carriers can greatly benefit from the recent advances in artificial intelligence and machine learning. A lot of approaches have proven to be successful in solving problems of claims management and fraud detection. Claims management can be augmented using machine learning techniques in different stages of the claim handling process. By leveraging AI and handling massive amounts of data in a short time, insurers can automate much of the handling process, and for example fast-track certain claims, to reduce the overall processing time and in turn the handling costs while enhancing customer experience.
The algorithms can also reliably identify patterns in the data and thus help to recognize fraudulent claims in the process. With their self-learning abilities, AI systems can then adapt to new unseen cases and further improve the detection over time. Furthermore, machine learning models can automatically assess the severity of damages and predict the repair costs from historical data, sensors, and images.
Two companies tackling the management of claims are Shift Technology who offer a solution for claims management and fraud detection and RightIndem with the vision to eliminate friction on claims. Motionscloud offer a mobile solution for the claims handling process, including evidence collection and storage in various data formats, customer interaction and automatic cost estimation. ControlExpert handle claims for the auto insurance, with AI replacing specialized experts in the long-run. Cognotekt optimize business processes using artificial intelligence. Therefore the current business processes are analyzed to find the automation potentials. Applications include claims management, where processes are automated to speed up the circle time and for detecting patterns that would be otherwise invisible to the human eye, underwriting, and fraud detection, among others. AI techniques are potential game changers in the area of fraud. Fraudulent cases may be detected easier, sooner, more reliable and even in cases invisible to the human eye.
Conclusion
Those who wish to defraud insurance companies currently do so by finding ways to “beat” the system. For some uses of AI, fraudsters can simply modify their techniques to “beat” the AI system. In these circumstances, whilst AI creates an extra barrier to prevent and deter fraud, it does not eradicate the ability to commit insurance fraud. However, with other uses of AI, the software is able to create larger blockades through its use of “big data”. It can therefore provide more preventative assistance. As AI continues to develop, this assistance will become of greater use to the insurance industry in their fight against fraud.