Better business with AI
Add Your Heading Text Here
The Artificial Intelligence revolution in the enterprise is well under way. According to Gartner’s 2018 CEO and Senior Business Executive Survey, 65% of respondents think that AI will have a ‘material impact on an area of their business’. Due to the combination of three critical factors – improved data availability and machine learning techniques, increased computing power and storage, and a strong enterprise thrust on data-driven decision-making – AI has taken a strong foothold in some of the largest corporations in the world today, commanding executive-level interest, attention and urgency.
Beyond simple automation, AI is powering complex, critical decisions in several areas from Renaissance Technologies’ Medallion Fund, which uses statistical probabilities and quantitative models and has become one of the startling successes in the hedge fund industry, to complex image annotation and deep learning that helps radiologists detect cancer in MRI scans. Here is a look at some of the critical areas where AI is augmenting human decision-making:
Healthy Healthcare
As multiple countries grapple problems from an ageing population, rising healthcare costs and low doctor-to-patient ratios, AI can help improve healthcare outcomes in a variety of ways. For instance, AI is being leveraged for public health studies – from detection of potential physical or psychological pandemics to epidemiology – by mining social media and other data sources.
Further, startups and conglomerates are working on AI for diagnostics – from detection of early warning signals to identifying and quantifying abnormalities/tumours. In the pharma industry, AI is helping improve site studies, drug development and clinical trials through analysis of meaningful data.
Financial Services
A common AI use case for financial services is in the domain of fraud detection and anti-money laundering. AI can help surface bad actors by quickly scanning data for anomalous behaviour. Similarly, AI is also powering customer interaction decisions through intelligent chatbots that can address common concerns, thus reducing the need for human intervention in repetitive, menial tasks. We’re also seeing increased proliferation of robo-advisers – which are advanced AI tools that help make investment decisions by matching investible capital and returns expected.
Managing Media
The media and entertainment industry is going through an AI and digital disruption due to the combination of huge datasets and success of torchbearers like Netflix and Spotify. Content recommendation and personalisation are decisions that are autonomously delivered by AI, which can quickly scan a user’s history and match it with the preferences of similar users.
The industry is also relying on AI to make decisions around content creation, again taking a leaf out of Netflix to make content more engaging and sticky. There is also a strong use case of AI helping identify and attract customers by surfacing tailored content and promotions to increase subscriptions, loyalty and share-of-wallet.
Retail Rejig
Retail was one of the first industries to witness the rise of a data-powered competitor that eventually decimated incumbents. The brick-and-mortar retail industry is now incorporating AI in its decision-making process to replicate the customer experience expectations set by Amazon and the like.
Retailers leverage user purchase to identify next-best product and create tailored loyalty programmes. It is also being increasingly used for rapid experimentation to define store location, layouts and product-shelf decisions. Retailers can better anticipate demand, leading to leaner supply chains and warehouses, optimised inventory and fewer stockouts.
Efficient Manufacturing
Manufacturing companies are bringing in AI interventions to run leaner supply chains to cut the cost of transportation and wastage. AI also enables them to better anticipate demand by looking at historical sales, current uptake and other business environment factors to run on-demand production.
Some AI-led decisions are pervasive across multiple industries. For instance, digital personalisation, ie, serving targeted promotions to customers based on their key purchase drivers, is a multi-industry example of AI in action.
The other is for detecting security threats through anomaly detection and video analytics to identify unauthorised entry. Human Resources is another function that is rapidly changing, with companies using AI to speed up talent acquisition by scanning resumes for relevancy and reducing attrition by identifying key drivers that lead to employees leaving.
Successful AI-led Decisions
The business value of AI is significantly lowered when performed ad hoc, without a strong foundational strategy. It is important that the organisation clearly defines the decisions that should be powered by AI to maintain a high standard of outcomes. The responses will differ from company to company and from industry to industry, but it is important that corporations establish transparent standards for fair use.
We see enough examples of hastily implemented AI, leading to calamitous consequences and companies can no longer hide by saying, ‘The AI made me do it’. To demarcate the clear go and no-go zones for AI, here’s a handy questionnaire to ask yourself:
– Do we have enough superior quality data now and in the future for AI to make the best decision?
– Do we need to bring in insights from multiple sources to contribute to the decision-making process at a speed and scale, which cannot be efficiently handled by human cognition?
– Is human decision-fatigue or bias currently creating a sub-optimal outcome in this area?
– Could there be ethical or moral implications to an AI-led decision that might lead to disastrous consequences?
We also need to address the confidence issues. For instance, a lot of executives look down upon some of the black-box processes performed by AI algorithms. We need to find a way to address these issues by creating a transparent trail of AI decisions and the reasons why AI took a decision. Even in unsupervised learning scenarios, a trail of decisions will not only boost confidence but will also help build better AI and better businesses.
Re-imagined AI-powered decisions will become de rigueur only by the quality of the outcomes they deliver. According to Dr John Kelly, SVP — IBM Research and Solutions portfolio, “The success of cognitive computing will not be measured by Turing tests or a computer’s ability to mimic humans. It will be measured in more practical ways, like return on investment, new market opportunities, diseases cured and lives saved.” This is a crucial way to look at and measure the impact of AI on our businesses, society and lives.
Related Posts
AIQRATIONS
AI & FINTECH – TWO GAME CHANGING REVOLUTIONS IN THE DIGITAL ERA
Add Your Heading Text Here
More investors are setting their sights on the financial technology (Fintech) arena. According to consulting firm Accenture, investment in Fintech firms rose by 10 percent worldwide to the tune of $23.2 billion in 2016.
China is leading the charge after securing $10 billion in investments in 55 deals which account for 90 percent of investments in Asia-Pacific. The US came second taking in $6.2 billion in funding. Europe, also saw an 11 percent increase in deals despite Britain seeing a decrease in funding due to the uncertainty from the Brexit vote.
The excitement stems from the disruption of traditional financial institutions (FIs) such as banks, insurance, and credit companies by technology. The next unicorn might be among the hundreds of tech startups that are giving Fintech a go.
What exactly is going to be the next big thing has yet to be determined, but artificial intelligence (AI) will play a huge part.
Stiffening competition
The growing reality is that, while opportunities are abound, competition is also heating up.
Take, for example, the number of Fintech startups that aim to digitize routine financial tasks like payments. In the US, the digital wallet and payments segment is fiercely competitive. Pioneers like PayPal see themselves being taken on by other tech giants like Google and Apple, by niche-oriented ventures like Venmo, and even by traditional FIs.
Most recently, the California-based robo-advisor, Wealthfront, has added artificial intelligence capabilities to track account activity on its own product and other integrated services such as Venmo, to analyze and understand how account holders are spending, investing and making their financial decisions, in an effort to provide more customized advice to their customers. Sentient Technologies, which has offices in both California and Hong Kong, is using artificial intelligence to continually analyze data and improve investment strategies. The company has several other AI initiatives in addition to its own equity fund. AI is even being used for banking customer service. RBS has developed Luvo, a technology which assists it service agents in finding answers to customer queries. The AI technology can search through a database, but also has a human personality and is built to learn continually and improve over time.
Some ventures are seeing bluer oceans by focusing on local and regional markets where conditions are somewhat favorable.
The growth of China’s Fintech was largely made possible by the relative age of its current banking system. It was easier for people to use mobile and web-based financial services such as Alibaba’s Ant Financial and Tencent since phones were more pervasive and more convenient to access than traditional financial instruments.
In Europe, the new Payment Services Directive (PSD2) set to take effect in 2018 has busted the game wide open. Banks are obligated to open up their application program interfaces (APIs) enabling Fintech apps and services to tap into users’ bank accounts. The line between banks and fintech companies are set to blur so just about everyone in finance is set to compete with old and new players alike.
Leveraging Digital
Convenience has become a fundamental selling point to many users that a number of Fintech ventures have zeroed in on delivering better user experiences for an assortment of financial tasks such as payments, budgeting, banking, and even loan applications.
There is a mad scramble among companies to leverage cutting-edge technologies for competitive advantage. Even established tech companies like e-commerce giant Amazon had to give due attention to mobile as users shift their computing habits towards phones and tablets. Enterprises are also working on transitioning to cloud computing for infrastructure.
But where do more advanced technologies such as AI come in?
The drive to eliminate human fallibility has also made artificial intelligence (AI) driven to the forefront of research and development. Its applications range from sorting what gets shown on your social media newsfeed to self-driving cars. It’s also expected to have a major impact in Fintech due to potential of game changing insights that can be derived from the sheer volume of data that humanity is generating. Enterprising ventures are banking on it to expose the gap in the market that has become increasingly small due to competition.
All about algorithms
AI and finance are no strangers to each other. Traditional banking and finance have relied heavily on algorithms for automation and analysis. However, these were exclusive only to large and established institutions. Fintech is being aimed at empowering smaller organizations and consumers, and AI is expected to make its benefits accessible to a wider audience.
AI has a wide variety of consumer-level applications for smarter and more error-free user experiences. Personal finance applications are now using AI to balance people’s budgets based specifically to a user’s behavior. AI now also serves as robo-advisors to casual traders to guide them in managing their stock portfolios.
For enterprises, AI is expected to continue serving functions such as business intelligence and predictive analytics. Merchant services such as payments and fraud detection are also relying on AI to seek out patterns in customer behavior in order to weed out bad transactions.
People may soon have very little excuse of not having a handle of their money because of these services
Concerns Going Forward
While artificial intelligence holds the promise of efficiency, better decision-making, stronger compliance and potentially even more profits for investors, the technology is young. Banks need to find ways to lower costs and technology is the most obvious answer. A logical response by banks is to automate as much decision-making as possible, hence the number of banks enthusiastically embracing AI and automation. But the unknown risks inherent in aspects of AI have not been eliminated. According to a Euromoney Survey and report commissioned by Baker & McKenzie, out of 424 financial professionals, 76% believe that financial regulators are not up to speed on AI and 47% are not confident that their own organizations understand the risks of using AI. Additionally an increasing reliance on artificial intelligence technologies comes with a reduction in jobs. Many argue that the human intuition plays a valuable role in risk assessment and that the black box nature of AI makes it difficult to understand certain unexpected outcomes or decisions produced by the technology.
Towards the future
With the stiff competition in Fintech, ventures have to deliver a truly valuable products and services in order to stand out. The venture that provides the best user experience often wins but finding this X factor has become increasingly challenging.
The developments in AI may provide that something extra especially if it could promise to eliminate the guess work and human error out of finance. It’s for these reasons that AI might just hold the key to what further Fintech innovations can be made.