Top 10 Exponential Technologies Trends – 2019
Add Your Heading Text Here
Across the world of technology, we are seeing the proliferation of new age developments across software and hardware – titled “Exponential Technologies”. The term refers to a wide range of recent technology breakthroughs – Artificial Intelligence, Internet of Things, Cloud Computing, Augmented and Virtual Reality, Blockchain and the allied. They are collectively referred to as ‘exponential’ considering the humungous potential value that they could possibly add to business. As these technologies continue to mature in their development and adoption, the world is gaining a more concrete insight into the worth of these technologies and their use cases. 2019 will most certainly be the year where these technologies will go mainstream – and deliver exponential value to their proponents. With high investor interest (and money) riding on these new age technologies, I am confident that in 2019, there will be a high uptake in their commercialization. Here are the top10 trends that I foresee in 2019 in exponential technologies :
1. Blockchain Beyond the Hype
In 2018, there was no doubt a lot of excitement and buzz as technology vendors and investors started investigating blockchain and cryptocurrency. In 2019, expect blockchain to move beyond the hype and enter the mainstream. Gartner estimates that blockchain applications will create $3.1 trillion in business value by 2030. Over 2018, several tech-savvy businesses started their own experiments with blockchain in areas such as supply chain, which is ripe for a blockchain-powered disruption. Within blockchain, I foresee:
Increased collaboration between businesses and tech vendors to unlock the power of blockchain across multiple use cases. Given its immutable and decentralized nature, blockchain will be invaluable in sectors such as manufacturing, defense and financial services – and we will see innovative use cases coming out of these domains
Within blockchain, smart contracts specifically will gain immense traction. The business value of smart contracts is remarkably clear – they drastically reduce the time and effort for routine but lengthy paperwork processes, while maintaining the sanctity through a blockchain network
Due to the numerous crypto frauds seen uncovered in the last year, more and more sovereign governments will push legislation to regulate and establish clear rules around blockchain and cryptocurrency. I have no doubts that this will have a net positive impact – as it will demonstrably improve the consumer confidence and enterprise adoption for these technologies by laying down a clear legal framework for their use
2. 3rd Platform Technology to Accelerate Digital Transformation
A combination of social, mobile, data-driven decision-making and cloud infrastructure and processing is commonly referred to today as 3rd platform technology. In 2019, there will be no stopping the juggernaut of internal IT departments moving ever faster towards digital technology.
According to a research by IDC, it is expected that by 2023, 75% of all IT spending will be on such 3rd platform technology, with over 90% of all enterprises building “digital native” IT environments
Further advanced technologies such as distributed cloud, hyperagile app technologies and architectures, AI at the edge and AI-powered voice UIs will be central to how enterprises enable digital transformation using 3rd platform technologies.
This expansion in demand for 3rd platform technologies will be the outcome on increasing pressures on internal IT to become profit centers and unlocking new sources of revenue for the parent enterprise. Using easily scalable and replicable digital frameworks, early adopter IT departments would be able to commercialize this technologies to their competitors while giving their businesses critical competitive advantage
3. Quantum Computing to Come of Age
Quantum computing is a non-traditional form of computing operating on the quantum state of subatomic particles and representing information as elements denoted through quantum bits. The unmitigated rise in the development and permeation of quantum computing is the third key trend that I see for 2019. It is estimated that by 2023, 20% of organizations will carve out budgets for quantum computing projects, as opposed to less than 1% today.
With heavier software paradigms such as Internet of Things, Artificial Intelligence and blockchain achieving mainstream status, there will be large scale demand for quantum computing to come out of the shadows of academia and into business. Quantum computing will move well beyond a buzzword and will be part of multiple projects at an experimental scale at corporations.
Quantum Computing will succeed where traditional computing has failed, providing parallel execution and exponential scalability. Such systems will take on problems too complex for a traditional approach or where the latency for traditional algorithms would be untenable
Business leaders across multiple industries – automotive, financial, insurance, pharmaceuticals, military and research organizations – will see massive gains through the advancements in Quantum Computing .
4.Acceleration in the Pervasiveness of the Internet of Things
While Internet of Things has demonstrably hit mainstream status across industries such as consumer goods and retail, and use cases such as supply chain and logistics, we will see further acceleration in its adoption in 2019
IOT-enabled hardware devices will proliferate nearly all walks of human life. Devices from sensors, wearables, smart assistants and wearables will be a feature in everyday life for most individuals in the developed world and will be a key focus for powering digital transformation
With increasing demand for IOT-powered devices across use cases will definitively bring endpoint security into focus for enterprises. As IOT devices become the first frontier for communication with consumers through highly sensorized environments, we will see a rapid escalation in the adoption of endpoint security practices and software
To support this deep network of the Internet of Things will require an immediate focus on rapidly enabling 5G connectivity in 2019. Not having a robust underlying infrastructure to support IOT will be disastrous for businesses and individuals who will be highly reliant on it for their day-to-day activity.
5. Convergence of AI, Blockchain, Cloud and IO
Could a future software stack comprise AI, Blockchain and IOT running on the cloud? It is not too hard to imagine how these exponential technologies can come together to create great value. In 2019, I expect that we will see a strong spread of use cases that effectively combine these technologies.
Internet of Things devices will largely be the interface with which consumers and other societal stakeholder will interact. Voice-enabled and always connected devices – such as Google Home and Amazon’s Alexa will augment the customer experience and eventually become the primary point of contact with businesses
Artificial Intelligence frameworks such as Speech Recognition and Natural Language Processing are making huge advances. These will be the translation layer between the sensor on one end and the deciphering technology on the other end
Blockchain-like decentralized databases will act as the immutable core for managing contracts, consumer requests and transactions between various parties in the supply chain
Cloud will be the mainstay for running these applications requiring huge computational resources and very high availability. I expect more cloud vendors to come forward (Amazon and Google for instance already have) with specialized cloud frameworks to handle the torrent of requests that these type of applications would require.
6.New UI/UX Interfaces to Emerge on the Scene
To unlock and harness the true value of exponential technology it is incumbent that we do not rely only on existing paradigms of end-user interfaces such as web and mobile. We need to reinvent new paradigms and explore game changing new interfaces that will help usher better customer and user experiences.
Conversational platforms – ones which are primarily activated through voice and voice-recognition AI will conduct numerous exchanges on behalf of customers. Already we are seeing rapid adoption of conversational interfaces such as Google Home, Amazon Alexa and Apple’s Siri. These will only grow and prominence and entire CX use cases will be centered around these platforms
Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) will be increasingly leveraged across a vast selection of topical use cases. Incorporating these alongside traditional interfaces will be crucial to delivering the future of an immersive user experience. According to Gartner, we will shift from thinking about individual devices and fragmented user interface (UI) technologies to a multichannel and multimodal experience.
These immersive experience-led interfaces such as VR and AR will become increasingly popular, with 70% of enterprises experimenting with such technology for consumer and enterprise use and 25% of organizations deploying it into production.
7.Edge Computing to become an Enterprise Mandate
Simply put, edge computing is a computing topology in which information processing, and content collection and delivery, are placed closer to these endpoints. For reducing the latency running AI algorithms and eventual response times, edge computing will become an enterprise mandate for use cases involving a convergence of IOT and AI.
In 2019, adoption of edge computing will be driven by the need to keep the processing power close to endpoints as opposed to a centralized cloud server. Having said that, edge computing will not necessitate the creation of a new architecture. Cloud and edge computing will complement each other. Cloud services will be charged with centralized service execution, not only on centralized servers, but also across distributed servers on-premises and on-the-edge devices themselves.
Five years down the line expect to see specialized AI chips, supporting greater processing power, storage and other advanced capabilities. They will be incorporated into a wider array of edge devices. Not too far into the future, we will see 40% of organizations’ cloud deployments include an element of edge computing and 25% of endpoint devices and systems will execute AI algorithms.
We will see more intelligent and empowered edge computing devices as well. According to Gartner, storage, computing and advanced AI and analytics capabilities will expand the capabilities of edge devices through 2028.
8. DevOps Augmented by AI
Despite almost universal acceptance of the DevOps framework across global enterprises, adoption has been patchy and slow. This is due to numerous reasons, ranging from a distributed toolset and a paucity of expert practitioners. However with the emergence of AI, we will see an increased process automation between software development and deployment, accelerating the enablement of DevOps
AI-powered QA suites will increase the automation quotient in the DevOps process. Given the advancements seen in automation, AI will rapidly intervene in the QA process across unit testing, regression testing, functional testing and user acceptance testing.
DevSecOps will combine the power of DevOps and AI in the field of information security. A centralized logging architecture recording suspicious activity and threats combined with ML-based anomaly detection techniques will empower developers to accurately pinpoint potential threats to their system and secure it for the future.
AI will also break the cultural barriers that typically exist between developer and operations teams. . AI-powered systems will enable DevOps teams to have a single, unified view into system issues across a complex toolchain while improving the collective knowledge of anomalies detected and the pathways for redressal.
9.Autonomous Things on the Rise:
At present, we are seeing experiments at an advanced level in the field of autonomous things. Autonomous things comprise whole gamut of unmanned objects – from drones, cars and robots. In 2019, I expect there to be a steady rise in the adoption and appreciation of this area of technology
Autonomous things of today are largely centered around the current paradigm of basic automation and rigid if-else programming rules. The next revolution in the field of autonomous things will be by exploiting the power of AI to exhibit more advanced, proactive and multi-threaded behaviors
Demand for autonomous things will continue to grow, specifically for autonomous vehicles. According to a Gartner survey, by 2021, 10% of new vehicles will have autonomous driving capability, compared to less than 1% in 2017.
Robotics and drones powered by AI will be able to address more complex use cases bringing in further efficiencies to incumbent businesses in the field of logistics delivery, warehouse management and manufacturing
10. AI to Disrupt Cybersecurity
Finally, the last key trend in the exponential technologies space for 2019 pertains to cybersecurity. While this is a remarkably advanced field, we will see continued growth and evolution of cybersecurity in combination with artificial intelligence
Using anomaly detection and machine learning, AI will hugely disrupt the field of cyber security. Security practitioners will be empowered to identify intrusions and malafide behavior faster using automated, always-on algorithms to constantly survey the secured network for wrongful activity and address concerns before they break-ins occur
AI can be quickly training over a massive data set of cyber security, network, and even physical information. Cyber security vendors will soon roll out AI-enabled solutions that will learn at an abstract level to detect and block abnormal behavior, even when this behavior does not fit within a known pattern. I expect that in 2019 companies will incorporate ML into every category of cybersecurity products.
By extension, we will see a fight between good AI and bad AI in the domain of cybersecurity. There are genuine fears that the next generation of attacks will not be carried out by human hackers but pieces of code designed to rapidly infiltrate a secure environment. Countering that with so-called ‘good AI’ will be crucial in undermining the impact these fast-paced attacks can have
Related Posts
AIQRATIONS
How Rise of Exponential Technologies – AI, RPA, Blockchain, Cybersecurity will Redefine Talent Demand & Supply Landscape
Add Your Heading Text Here
The current boom of exponential technologies of today is causing strong disruption in the talent availability landscape, with traditional, more mechanical roles being wiped out and paving way for huge demand for learning and design thinking based skills and professions. The World Economic Forum said in 2016 that 60% of children entering school today will work in jobs that do not yet exist.
While there is a risk to jobs due to these trends, the good news is that a huge number of new jobs are getting created as well in areas like AI, Machine Learning, Robotic Process Automation (RPA), Blockchain, Cybersecurity, etc. It is clearly a time of career pivot for IT professionals to make sure they are where the growth is.
AI and Machine Learning upending the traditional IT Skill Requirement
AI and Machine Learning will create a new demand for skills to guide its growth and development. These emerging areas of expertise will likely be technical or knowledge-intensive fields. In the near term, the competition for workers in these areas may change how companies focus their talent strategies.
At a time when the demand for data scientists and engineers will grow 39% by 2020, employers are seeking out leaders who can effectively work with technologists to ask the right questions and apply the insight to solve business problems. The business schools are, hence, launching more programs to equip graduates with the skills they need to succeed. Toronto’s Rotman School of Management, for example, last week launched a nine-month program which provides recent college graduates with advanced data management, analytical and communication skills.
According to the Organization of Economic Cooperation and Development, only 5-10% of labor would be displaced by intelligent automation, and new job creation will offset losses.
The future will increase the value of workers with a strong learning ability and strength in human interaction. On the other hand, today’s highly paid, experienced, and skilled knowledge workers may be at risk of losing their jobs to automation.
Many occupations that might appear to require experience and judgment — such as commodity traders — are being outdone by increasingly sophisticated machine-learning programs capable of quickly teasing subtle patterns out of large volumes of data. If your job involves distracting a patient while delivering an injection, guessing whether a crying baby wants a bottle or a diaper change, or expressing sympathy to calm an irate customer, you needn’t worry that a robot will take your job, at least for the foreseeable future.
Ironically, the best qualities for tomorrow’s worker may be the strengths usually associated with children. Learning has been at the centre of the new revival of AI. But the best learners in the universe, by far, are still human children. At first, it was thought that the quintessential preoccupations of the officially smart few, like playing chess or proving theorems — the corridas of nerd machismo — would prove to be hardest for computers. In fact, they turn out to be easy. Things every dummy can do like recognizing objects or picking them up are much harder. And it turns out to be much easier to simulate the reasoning of a highly trained adult expert than to mimic the ordinary learning of every baby. The emphasis on learning is a key change from previous decades and rounds of automation.
According to Pew Research, 47% of all employment opportunities will be occupied by machines within the next two decades.
What types of skills will be needed to fuel the development of AI over the next several years? These prospects include:
- Ethics: The only clear “new” job category is that of AI ethicist, a role that will manage the risks and liabilities associated with AI, as well as transparency requirements. Such a role might be imagined as a cross between a data scientist and a compliance officer.
- AI Training: Machine learning will require companies to invest in personnel capable of training AI models successfully, and then they must be able to manage their operations, requiring deep expertise in data science and an advanced business degree.
- Internet of Things (IoT): Strong demand is anticipated for individuals to support the emerging IoT, which will require electrical engineering, radio propagation, and network infrastructure skills at a minimum, plus specific skills related to AI and IoT.
- Data Science: Current shortages for data scientists and individuals with skills associated with human/machine parity will likely continue.
- Additional Skill Areas: Related to emerging fields of expertise are a number of specific skills, many of which overlap various fields of expertise. Examples of potentially high-demand skills include modeling, computational intelligence, machine learning, mathematics, psychology, linguistics, and neuroscience.
In addition to its effect on traditional knowledge workers and skilled positions, AI may influence another aspect of the workplace: gender diversity. Men hold 97 percent of the 2.5 million U.S. construction and carpentry jobs. These male workers stand more than a 70 percent chance of being replaced by robotic workers. By contrast, women hold 93 percent of the registered nurse positions. Their risk of obsolescence is vanishingly small: .009 percent.
RPA disrupting the traditional computing jobs significantly
RPA is not true AI. RPA uses traditional computing technology to drive its decisions and responses, but it does this on a scale large and fast enough to roughly mimic the human perspective. AI, on the other hand, applies machine and deep learning capabilities to go beyond massive computing to understand, learn, and advance its competency without human direction or intervention — a truly intelligent capability. RPA is delivering more near-term impact, but the future may be shaped by more advanced applications of true AI.
In 2016, a KPMG study estimated that 100 million global knowledge workers could be affected by robotic process automation by 2025.
The first reaction would be that in the back office and the middle office, all those roles which are currently handling repetitive tasks would become redundant. 47% of all American job functions could be automated within 20 years, according to the Oxford Martin School on Economics in a 2013 report.
Indeed, India’s IT services industry is set to lose 6.4 lakh low-skilled positions to automation by 2021, according to U.S.-based HfS Research. It said this was mainly because there were a large number of non-customer facing roles at the low-skill level in countries like India, with a significant amount of “back office” processing and IT support work likely to be automated and consolidated across a smaller number of workers.
Automation threatens 69% of the jobs in India, while it’s 77% in China, according to a World Bank research.
Job displacement would be the eventual outcome however, there would be several other situations and dimensions which need to be factored. Effective automation with the help of AI should create new roles and new opportunities hitherto not experienced. Those who currently possess traditional programming skills have to rapidly acquire new capabilities in machine learning, develop understanding of RPA and its integration with multiple systems. Unlike traditional IT applications, planning and implementation could be done in small patches in shorter span of time and therefore software developers have to reorient themselves.
For those entering into the workforce for the first time, there would be a demand for talent with traditional programming skills along with the skills for developing RPA frameworks or for customising the frameworks. For those entering the workforce for being part of the business process outsourcing functions, it would be important to develop capability in data interpretation and analysis as increasingly more recruitment at the entry level would be for such skills and not just for their communication or transaction handling skills.
Blockchain – A blue ocean of a New kind of Financial Industry Skillset
A technology as revolutionary as blockchain will undoubtedly have a major impact on the financial services landscape. Many herald blockchain for its potential to demystify the complex financial services industry, while also reducing costs, improving transparency to reduce the regulatory burden on the industry. But despite its potential role as a precursor to extend financial services to the unbanked, many fear that its effect on the industry may have more cons than pros.
30–60% of jobs could be rendered redundant by the simple fact that people are able to share data securely with a common record, using Blockchain
Industries including payments, banking, security and more will all feel the impact of the growing adoption of this technology. Jobs potentially in jeopardy include those involving tasks such as processing and reconciling transactions and verifying documentation. Profit centers that leverage financial inefficiencies will be stressed. Companies will lose their value proposition and a loss of sustainable jobs will follow. The introduction of blockchain to the finance industry is similar to the effect of robotics in manufacturing: change in the way we do things, leading to fewer jobs, is inevitable.
Nevertheless, the nature of such jobs is likely to evolve. While Blockchain creates an immutable record that is resistant to tampering, fraud may still occur at any stage in the process but will be captured in the record and there easily detected. This is where we can predict new job opportunities. There could be a whole class of professions around encryption and identity protection.
So far, the number of jobs created by the industry appears to exceed the number of available professionals qualified to fill them, but some aren’t satisfied this trend will continue. Still, the study of the potential impact of blockchain tech on jobs has been largely qualitative to date. Aite Group released a report that found the largest employers in the blockchain industry each employ about 100 people.