Reimagining Enterprise Decision-Making With Artificial Intelligence
Add Your Heading Text Here
Artificial Intelligence will deliver revolutionary impact on how enterprises make decisions today. In the last few years alone, we have rapidly moved beyond heuristics-based decision-making to analytics-driven decision-support. In the VUCA phase, businesses globally are now pivoting to an AI-led, algorithm-augmented style of decision-making. With huge computing power and ever-increasing data storage and analytics prowess, we are entering a new paradigm, a probable and interesting scenario wherein, Artificial Intelligence will play a huge role in augmenting human intelligence and enabling decision-making with complete autonomy. The big hope is that this new paradigm will not only reduce human biases and errors that are common with heuristic decisions, but also reduce the time involved in making these critical decisions.
Here, I’ll attempt to focus on how we moved from simpler data driven decision-support to AI-powered decisions. The evolution of this technology has been breathtaking to behold and just might provide clues as to what we can expect in the future. Further, I’ll cover a few critical aspects that need to be inculcated by organizations on the AI transformation journey, and provide a few insightful cues that will make this journey exciting and fruitful.
Transformation of Decision-Making: From Analytics to AI
First, let us look at how we got here. Some truly pathbreaking events happened along the way while we were trying to make more accurate business decisions, leading us to reimagine how decisions will be made in the enterprise.
Organizations are Becoming Math Houses
With data deluge and digital detonation, combined with the appreciation of the fact that robust analytical capabilities lead to more informed decisions, we are witnessing AI savvy organizations rapidly maturing into ‘math houses.’ Data science – the ability to extract meaningful insights out of data has become de rigueur. Why? Because we now know that data, when seen in isolation, is inherently dumb. It is the ability to process this data and identify patterns and anomalies – using sophisticated algorithms and ensemble techniques – that makes all the difference. These self-intuitive algorithms are where real value resides – as they define the intelligence required to uncover insights and make smart recommendations. Organizations today are evolving into algorithm factories. There is a real understanding today that by enabling continuous advancement in mathematical algorithms, we can deliver consistent decisions based on prescribed as well as evolving business rules.
It is now an established reality that companies with robust mathematical capabilities possess a huge advantage over those that don’t. Indeed, it’s this math-house orientation that separates companies like Amazon and Google from the ones they leave in their wake, with their ability to understand their customers better, identify anomalies and recognize key patterns.
AI: From Predictive to Prescriptive
We saw a similar evolution in the age of analytics – wherein the science and value veered from descriptive analytics, providing diagnostics of past events to prescriptive analytics, helping see and shape the future. We are seeing a similar evolution in how AI gets leveraged in the enterprise and where its maximum value lies.
In early implementations, it was common to see AI as just a tool to predict and forecast future conditions, while accounting for the dynamism seen in the external environment. Today, AI-enabled decision-making is more prescriptive, with AI providing enterprises not just a look into the future, but also key diagnostics and suggestions on potential decision options and their payoffs. Such evolved applications of AI can help businesses make decisions that can potentially exploit more business opportunities, while averting potential threats much earlier.
Mr. Algorithm to Drive Decision Making
The culmination of this AI-era advancement would be the introduction of smart algorithms in every walk of life and business. Algorithms will become further mainstream leading to what will be the most sweeping business change since the industrial revolution. Organizations – those that already aren’t – will start developing a suite of algorithmic IP’s that will de-bias most enterprise decisions.
If Mr. Algorithm is going to drive most enterprise decisions of tomorrow, we need to create some checks and balances to ensure that it does not go awry. It is more critical today than ever before that the algorithmic suite developed by enterprises has a strong grounding in ethics and can handle situations appropriately for which explicit training may not have been provided.
How to Enable this AI Era of Change
Ushering into an AI-centric era of decision-making will require organizational transformation from business, cultural and technical standpoints. The following facets will be the enablers of this change:
Developing an Engineering Mindset
Instrumenting AI in the enterprise requires a combination of data scientists and computer scientists. As AI matures in the enterprise, the users, use cases and data will increase exponentially. To deliver impactful AI applications, scale and extensibility is critically important. This is where having an engineering mindset comes in. Imbibing an engineering mindset will help standardize the use of these applications while ensuring that they are scalable and extensible.
Learning, Unlearning, Relearning
The other critical aspect to a culture where AI can thrive is creating an environment supporting continuous unlearning and relearning. AI can succeed if the people developing and operating it are rewarded for continuous experimentation and exploration. And just like AI, people should be encouraged to incorporate feedback loops and learn continuously. As technology matures it’s important that the existing workforce keeps up. For one, it’s critical that the knowledge of algorithm theory, applied math alongside training on AI library and developer tools, is imparted into the workforce – and is continuously updated to reflect new breakthroughs in this space.
Embedding Design-Thinking and Behavioral Science at the Center of this Transformation
Finally, given the nature of AI applications, it’s critical that they are consumed voraciously. User input very often activates the learning cycles of artificial intelligence applications. To ensure high usage of these applications, it’s very important that we put the user at the center while designing these applications. This is where the application of behavioral sciences and human-centered design will deliver impact. By imparting empathy in these applications for the user, we will be able to design better and more useful AI applications.
As we augment decision-making with algorithmic, AI-centered systems and platforms – the big expectation is that they will bring untold efficiencies in terms of cost, alongside improvement in the speed and quality with which decisions get made. It’s time to reimagine and deliver on enterprise decision-making that is increasingly shaped through artificial intelligence. These aspects – how the AI is progressing and how to exploit its potential are of paramount importance to keep in mind for an AI transformation.
Related Posts
AIQRATIONS
Mapping the AI Transformation Journey In Your Organization
Add Your Heading Text Here
We are well and truly in the midst of the AI revolution. Research houses, academicians, think-tanks, business and technology leaders all agree upon the significant value waiting to be unlocked through the positive and progressive use of Artificial Intelligence – by re-engineering the old and envisioning the new. According to a research by Gartner, organizations using cognitive ergonomics and system design in new artificial intelligence projects will achieve long term success four times more often than others. Citing research by the MIT Center for Digital Business, from a competitive standpoint, companies that embrace digital transformation are 26 percent more profitable than their average industry competitors and enjoy a 12 percent higher market valuation.
The writing is on the wall. Intelligent business interventions made through AI will, to a large extent, define if your business will be an industry leader or a laggard tomorrow. And with that end in mind, businesses are rapidly changing their mindset and approach to AI – from topical experiments performed by forward-thinking business units, to more of a strategic mandate for enabling competitive differentiation. Businesses realize that for truly unlocking business value, they need to not only weave AI into the fabric of their enterprise, but also operationalize it – with the right personnel and change management initiatives. Given that AI can bring both cost efficiencies to business as well as potentially new revenue streams, businesses today are exploring an ‘AI Transformation’ – moving the dial on what is truly possible through a business model, engineered around AI. To enable your organization to do so, here are three powerful ideas to map the AI Transformation journey of your business.
Ensure Enterprise Readiness to Build and Adopt AI
The first step in the journey to AI Transformation for your enterprise is to understand and address if there are any disparities between your vision for AI and the ability of your organization to follow through with it. To that end, it is important to assess just how ready your enterprise is, in its current state, to build, deploy, adopt and benefit from AI-centric solutions. Ideas for AI Transformation need to be communicated clearly and grounded in the realities of organizational capabilities. When they are not, even the best intentions can go awry.
To do so, it is critical that business leaders measure their current AI maturity and assess the availability of internal skills. This will enable you to baseline just how empowered your current workforce is to develop industry-leading AI solutions. Once such a baseline is established on workforce readiness for building and adopting AI-led solutions, organizations need to start improving on these metrics – through internal trainings and external capability augmentation.
By developing this baseline score for AI readiness – organizations can have an objective view of where they are, how far they need to go and what the potential milestones to be achieved are in the journey to AI Transformation. This sort of pre-survey, combined with relevant training and assessment can help organizations craft a relevant roadmap with realistic timelines, as well as concrete actionables.
Build an AI ‘Win Team’
An AI Transformation is not unlike an extremely complex business re-engineering exercise. It entails massive changes – from the way you do business to how you run internal processes and staff multiple business units. Not only is it important to reskill a huge section of the workforce, there is also an important aspect of enabling change management to reinforce the importance of an AI-centric mindset.
To overcome this challenge, enterprises need to foster the consensus and engagement of a ‘win-team.’ This win-team would typically comprise functional and technical leaders who would be responsible for enabling the AI Transformation within their business units – from orienting the employees to the new mindset and ensuring capability readiness for the tasks at hand. On one hand, functional leaders can help their teams identify the processes that can be re-imagined using AI and manage resistance to change. On the other hand, technical leaders would lead the solutioning of technical components, while setting the training priorities and calendars for the workforce.
On change management, enterprises need employees to clearly appreciate the topline and bottomline benefits of an AI Transformation and focus towards enabling it. Employees stand to benefit themselves – as the professional benefits of making this transformation will accrue for their future. To further explore how companies can reduce the defensiveness in implementing AI-led processes further, they could also set innovation objectives for stakeholders as part of their performance metrics. Doing this will help create a strong alignment between individual, team and organizational objectives. A key aspect of AI transformation is ensuring large-scale adoption and usage of AI-powered solutions. AI applications typically fare better with every incremental user feedback and enriched data sources. Adoption and continuous use is a key parameter for the success of this transformation.
Integrated Business Processes over Siloed Business Functions
For years, the view of technology transformation and procurement has been of one that happens at a department / functional level – HR teams buy talent management software, finance teams sanction the purchase of accounting software, and CRMs get implemented to aid the efforts of sales teams. While this serves small technology initiatives, a sea-change is required for progressing an AI Transformation. To foster this, enterprises need to make a shift from a siloed, function-centric mindset to an integrated, process-centric mindset.
This is because AI use cases can often span multiple business units and functions, while tapping into multiple data sources for providing cross-team value, seamlessly. The very nature of AI deployments thus requires a process-centric view, with a strong consensus and buy-in from multiple stakeholders. Furthermore, the budget for purchasing AI services / applications is likely to come from the allocations of multiple beneficiaries across functions. This makes it all the more imperative that enterprises deprioritize functions in favor of processes.
An AI Transformation is doubtless the most strategic subject to be tackled by organizations today. Successful transformations will ensure enterprises go beyond mere automation and cost-cutting strategies and unveil previously unseen business and revenue opportunities. It is also extremely important to consider the role of digitization in building a new technology infrastructure that is AI-ready – possibly decentralized, cloud-based and highly available. There is now an urgent need for business leaders to have more than just a superficial understanding of AI and its successes. They will now be tasked with building and delivering a concrete, value-oriented roadmap for enabling a key transformation in the history of their organizations.