Reimagining the future of travel and hospitality with artificial intelligence
Add Your Heading Text Here
Over the years, the influence of artificial intelligence (AI) has spread to almost every aspect of the travel and the hospitality industry. Thirty percent of hospitality businesses use AI to augment at least one of their primary sales processes, and most customer personalisation is done using AI. The proliferation of AI in the travel and hospitality industry can be credited to the humongous amount of data being generated today. AI helps analyse data from obvious sources, brings value in assimilating patterns in image, voice, video, and text, and turns it into meaningful and actionable insights for decision making. Trends, outliers, and patterns are figured out using machine learning-based algorithms that help in guiding a travel or hospitality company to make informed decisions.
“Discounts, schemes, tour packages, and seasons and travellers to target are formulated using this intelligent data combined with behavioural science and social media attribution to know customers behaviour and insights. “
Let’s take a close look at the AI-driven application areas in the travel and hospitality industry and the impact on the ensuing business value chain:
Bespoke and curated experiences
There are always a few trailblazers who are up for a new challenge and adopt new-age exponential technologies. Many hotel chains have started using an AI concierge. One great example of an AI concierge is Hilton World wide’s Connie, the first true AI-powered concierge bot. Connie stands at two feet high and guests can interact with it during their check-in. Connie is powered by IBM’s Watson AI and uses the Way Blazer travel database. It can provide succinct information to guests on local attractions, places to visit, etc. Being AI-driven with self-learning ability, it can learn and adapt and respond to each guest on personalised basis.
In the travel business, Mezi, using AI with Natural Language Processing technique, provides a personalised experience to business travellers, who usually are strapped for time. It talks about bringing on a concept of bleisure (business+leisure) to address the needs of the workforce. The company’s research shows that 84 percent of business travellers return feeling frustrated, burnt out, and unmotivated. The kind of tedious and monotonous planning that goes into the travel booking could be the reason for it. With AI and NLP, Mezi collects individual preferences and generates personalised suggestions so that a bespoke and streamlined experience is given and the issues faced are addressed properly.
Intelligent travel search
Increased productivity now begins with the search for the hotel, and sophisticated AI usage has paved the way for the customer to access more data than ever before. Booking sites like Lola.com provides on-demand travel services and have developed algorithms that can not only instantly connect people to their team of travel agents who find and book flights, hotels, and cars, but have been able to empower their agents with tremendous technology to make research and decisions an easy process.
Intelligent travel assistants
Chatbot technology is another big strand of AI, and not surprisingly, many travel brands have already launched their own versions in the past year or so. Skyscanner is just one example, creating an intelligent bot to help consumers find flights in Facebook Messenger. Users can also use it to request travel recommendations and random suggestions. Unlike ecommerce or retail brands using chatbots, which can appear gimmicky, there is an argument that examples like Skyscanner are much more relevant and useful for everyday consumers. After all, with the arrival of many more travel search websites, consumers are being overwhelmed by choice – not necessarily helped by it. Consequently, a chatbot like Skyscanner is able to cut through the noise, connecting with consumers in their own time and in the social media spaces they most frequently visit.
Recently, Aero Mexico started using Facebook Messenger chatbot to answer very generic customer questions. The main idea was to cater to 80 percent of questions, which are usually repeat ones and about common topics. Thus, AI is of great application to avoid a repetitive process. Airlines hugely benefit from this. KLM Royal Dutch Airlines uses AI to respond to the queries of customers on Twitter and Facebook. It uses an algorithm from a company called Digital Genius, which is trained on 60,000 questions and answers. Not only this, Deutsche Lufthansa’s bot Mildred can help in searching the cheapest fares.
Intelligent recommendations
International hotel search engine Trivago acquired Hamburg, Germany machine learning startup Tripl as it ramps up its product with recommendation and personalisation technology, giving them a customer-centric approach. The AI algorithm gives tailored travel recommendations by identifying trends in users’ social media activities and comparing it with in-app data of like-minded users. With its launch, users could sign up only through Facebook, potentially sharing oodles of profile information such as friends, relationship status, hometown, and birthdays.
Persona-based travel recommendations, use of customised pictures and text are now gaining ground to entice travel. KePSLA’s travel recommendation platform is one of the first in the world to do this by using deep learning and NLP solutions. With 81 percent of people believing that intelligent machines would be better at handling data than humans, there is also a certain level of confidence in this area from consumers.
Knowing your traveller
Dorchester Collection is another hotel chain to make use of AI. However, instead of using it to provide a front-of-house service, it has adopted it to interpret and analyse customer behaviour deeply in the form of raw data. Partnering with technology company, Richey TX, Dorchester Collection has helped to develop an AI platform called Metis.
Delving into swathes of customer feedback such as surveys and reviews (which would take an inordinate amount of time to manually find and analyse), it is able to measure performance and instantly discover what really matters to guests. Métis helped Dorchester to discover that breakfast it not merely an expectation – but something guests place huge importance on. As a result, the hotels began to think about how they could enhance and personalise the breakfast experience.
Intelligent forecasting: flight fares and hotel tariffs
Flight fares and hotel tariffs are dynamic and vary on real-time basis, depending on the provider. No one has time to track all those changes manually. Thus, intelligent algorithms that monitor and send out timely alerts with hot deals are currently in high demand in the travel industry.
Trivago and Make my trip are screening through swamp of data points, variables, and demand and supply patterns to recommend optimised travel and hotel prices. The AltexSoft data science team has built such an innovative fare predictor tool for one of their clients, a global online travel agency, Fareboom.com. Working on its core product, a digital travel booking website, they could access and collect historical data about millions of fare searches going back several years. Armed with such information, they created a self-learning algorithm, capable of predicting future price movements based on a number of factors, such as seasonal trends, demand growth, airlines special offers, and deals.
Optimised disruption management: delays and cancellations
While the previous case is focused mostly on planning trips and helping users navigate most common issues while traveling, automated disruption management is somewhat different. It aims at resolving actual problems a traveller might face on his/her way to a destination point. Mostly applied to business and corporate travel, disruption management is always a time-sensitive task, requiring instant response.
While the chances of getting impacted by a storm or a volcano eruption are very small, the risk of a travel disruption is still quite high: there are thousands of delays and several hundreds of cancelled flights every day. With the recent advances in AI, it became possible to predict such disruptions and efficiently mitigate the loss for both the traveller and the carrier. The 4site tool, built by Cornerstone Information Systems, aims to enhance the efficiency of enterprise travel.
The product caters to travellers, travel management companies, and enterprise clients, providing a unique set of features for real-time travel disruption management. In an instance, if there is a heavy snowfall at your destination point and all flights are redirected to another airport, a smart assistant can check for available hotels there or book a transfer from your actual place of arrival to your initial destination.
Not only are passengers are affected by travel disruptions; airlines bear significant losses every time a flight is cancelled or delayed. Thus, Amadeus, one of the leading global distribution systems (GDS), has introduced a Schedule Recovery system, aiming to help airlines mitigate the risks of travel disruption. The tool helps airlines instantly address and efficiently handle any threats and disruptions in their operations.
Future potential: So, reflecting on the above-mentioned use cases of the travel and hospitality industry leveraging Ai to a large extent, there will be few latent potential areas in the industry that will embrace AI in the future :
“Undoubtedly, we will witness many travel and hospitality organisations using AI for intelligent recommendations as well as launching their own chatbots. There’s already been a suggestion that Expedia is next in line, but it is reportedly set to focus on business travel rather than holidaymakers.”
Due to the greater need for structure and less of a desire for discovery, it certainly makes sense that AI would be more suited to business travellers. Specifically, it could help to simplify the booking process for companies, and help eliminate discrepancies around employee expenses. With reducing costs and improving efficiency two of the biggest benefits, AI could start to infiltrate business travel even more so than leisure in the next 12 months.
Lastly, we can expect to see greater development in conversational AI in the industry. With voice-activated search, the experience of researching and booking travel has the potential to become quicker and easier than ever before. Similarly, as Amazon Echo and Google Home start to become commonplace, more hotels could start to experiment with speech recognition to ramp up customer service. This means devices and bots could become the norm for brands in the travel and hospitality industry.
The travel and hospitality industry transformation will morph into experience-driven and asset-light business, and wide adoption of AI will usher a new-age customer experience and set a benchmark for other industries to emulate. Fasten your seat belts … AI will redefine the travel and hospitality industry.
Related Posts
AIQRATIONS
Introducing AIQRATE’s bespoke consulting offerings for CHRO/CPO/HR Leaders
Add Your Heading Text Here
AI = The Future of “H” in HR : Introducing AIQRATE’s consulting offerings for CHRO/CPO/HR leaders
AI = The future of “H” in HR . In today’s competitive businesses , the role of AI in planning, operations & strategy has transformed from being a competitive differentiation to a competitive necessity . The age of “ trust me , this will work” is over. In the current business mandate , where HR is held accountable for delivering business results , it has become imperative to harness the power of AI . AI can elevate HR from a tactical support function to a strategic transformative function . HR business function disruption thru Talent Sciences : business capability of using AI and algorithmic modeling to drive HCM decision making will form the backbone of HR function.
Introducing AIQRATE’s consulting offering for Chief Human Resource Officer (CHRO) / Chief people officer (CPO) / Chief Talent officer (CTO) /HR Leaders working across Enterprises , GCCs , SMBs , Startups , Public Institutions :
- AI master class session : Contextualized for CHRO , CPO : demystify AI , AI strategy canvas , AI landscape & wide applications , HR vale chain interventions
- AI advisor on-demand : Build AI led decision making strategies and processes across the HR value chain and strategic interventions
- AI talent mapping strategies : Execute AIQRATE “T-REX” framework for building enterprise wise AI skilling & learning regime
- AI led interventions for CHRO/CPO : Reimagine HR domain , HR business function problems and scenarios leveraging AIQRATE consulting expertise
- Analytics to AI maturity assessment : Gauge your enterprise AI adoption maturity with AIQRATE “Elevate” transformation journey framework
AIQRATE’s extensive yet bespoke consulting offerings for CHRO/CPO/HR leaders focuses on building AI led strategies on talent workforce decisions and tracking performance of HR strategic initiatives and also on building data driven discovery algorithms on improving HR process efficiencies and outcomes.
AIQRATE’s attempts to gear up HR leaders to the future of work and our curated offerings will enable navigate four broad shifts for HR leaders :
- Accentuate strategic business acumen
2. Augment AI driven expertise for decision making
3. Amplify “transformation driven impact “ within the HR business function.
4. Accelerate “innovation driven culture” within the HR team
Reach out to us at consult@aiqrate.ai for detailed view and approach on our extensive AI consulting offerings for CHRO/CPO/HR leaders .
Related Posts
AIQRATIONS
Bring in Effective Data Norms
Add Your Heading Text Here
What constitutes ‘fair use’ of data is increasingly coming under scrutiny by regulators across the world. With the digital detonation that has been unleashed in the past few years, leading to a deluge of data – organisations globally have jumped at the prospect of achieving competitive advantage through more refined data mining methods. In the race for mining every bit of data possible and using it to inform and improve algorithmic models, we have lost sight of what data we should be collecting and processing. There also seems to be a deficit of attention to what constitutes a breach and how offending parties should be identified and prosecuted for unfair use.
There’s growing rhetoric that all these questions be astutely addressed through a regulation of some form. With examples of detrimental use of data surfacing regularly, businesses, individuals and society at large are demanding an answer for exactly what data can be collected – and how it should be aggregated, stored, managed and processed.
If data is indeed the new oil, we need to have a strong understanding of what constitutes the fair use of this invaluable resource. This article attempts to highlight India’s stance on triggering regulatory measures to govern the use of data.Importance of Data Governance
Importance of Data Governance
Before we try to get into what data governance should mean in the Indian context, let us first look at the definition of data governance and why it is an important field of study to wrap our head around.
In simple terms, data governance is the framework that lays down the strategy of how data is used and managed within an organisation. Data governance leaders must stay abreast of the legal and regulatory frameworks specific to the geographies that they operate in and ensure that their organisations are compliant with the rules and regulations. A lot of their effort at present is aimed at maintaining the sanctity of organisational data and ensuring that it does not fall in the wrong hands. As such, the amount of time and effort expended on ensuring that these norms are adequately adhered to is contingent upon the risk associated with a potential breach or loss of data.
In effect, a framework of data governance is intended to ensure that a certain set of rules is applied and enforced to ensure that data is used in the right perspective within an organisation.
Data Governance in Indian Context
India is rapidly moving towards digitisation. Internet connectivity has exploded in the last few years, leading to rapid adoption of internet-enabled applications — social media, online shopping, digital wallets etc. The result of this increasing connectivity and adoption is a fast-growing digital footprint of Indian citizens. Add to this the Aadhaar programme proliferation and adoption – and we have almost every citizen that has personal digital footprint somewhere – codified in the form of data.
With a footprint of this magnitude, there is an element of risk attached. What if this data falls in the wrong hands? What if personal data is used to manipulate citizens? What are the protection mechanisms citizens have against potential overreach by stewards of the data themselves? It is time we found answers to these very pertinent questions – and data governance regulation is the way we will find comprehensive answers to these impending conversations
Perspectives for India
The pertinent departments are mulling over on a collective stand that should be taken while formulating data governance norms. For one, Indian citizens are protected by a recent Supreme Court ruling that privacy is a fundamental right. This has led to a heightened sense of urgency around arriving at a legislative framework for addressing genuine concerns around data protection and privacy, as well as cybersecurity.
As a result of these concerns, the Central government recently set up a committee of experts, led by Justice BN Srikrishna, tasked with formulating data governance norms. This committee is expected to maintain the delicate balance between protecting the privacy of citizens and fostering the growth of the digital economy simultaneously. Their initial work – legal deliberations and benchmarking activity against similar legal frameworks such as GDPR (General Data Protection Regulation) – has resulted in the identification of seven key principles around which any data protection framework needs to be built. Three of the most crucial pointers include:
1. Informed Consent: Consent is deemed to be an expression of human autonomy. While collecting personal data, it is critical that the users be informed adequately about the implications around how this data is intended to be used before capturing their express consent to provide this data
2. Data Minimisation: Data should not be collected indiscriminately. Data collected should be minimal and necessary for purposes for which the data is sought and other compatible purposes beneficial for the data subject.
3. Structured Enforcement: Enforcement of the data protection framework must be by a high-powered statutory authority with sufficient capacity. Without statutory authority, any remedial measures sought by citizens over data privacy infringement will be meaningless.
Striking the right balance between fostering an environment in which the digital economy can grow to its full potential, whilst protecting the rights of citizens is extremely difficult.
With a multitude of malafide parties today seeking to leverage personal data of citizens for malicious purposes, it is crucial that the government and the legal system set out a framework that protects the sovereignty and interests of the people. By allaying fears of misuse of data, the digital economy will grow as people become less fearful and more enthusiastically contribute information where a meaningful end outcome can be achieved.
Related Posts
AIQRATIONS
The Eternal Debate: AI – Threat or Opportunity ?
Add Your Heading Text Here
While some predict mass unemployment or all-out war between humans and artificial intelligence, others foresee a less bleak future. A future looks promising, in which humans and intelligent systems are inseparable, bound together in a continual exchange of information and goals, a “symbiotic autonomy.” If you may. It will be hard to distinguish human agency from automated assistance — but neither people nor software will be much use without the other.
Mutual Co-existence – A Symbiotic Autonomy
In the future, I believe that there will be a co-existence between humans and artificial intelligence systems that will be hopefully of service to humanity. These AI systems will involve software systems that handle the digital world, and also systems that move around in physical space, like drones, and robots, and autonomous cars, and also systems that process the physical space, like the Internet of Things.
I don’t think at AI will become an existential threat to humanity. Not that it’s impossible, but we would have to be very stupid to let that happen. Others have claimed that we would have to be very smart to prevent that from happening, but I don’t think it’s true.
If we are smart enough to build machine with super-human intelligence, chances are we will not be stupid enough to give them infinite power to destroy humanity. Also, there is a complete fallacy due to the fact that our only exposure to intelligence is through other humans. There are absolutely no reason that intelligent machines will even want to dominate the world and/or threaten humanity. The will to dominate is a very human one (and only for certain humans).
Even in humans, intelligence is not correlated with a desire for power. In fact, current events tell us that the thirst for power can be excessive (and somewhat successful) in people with limited intelligence.
You will have more intelligent systems in the physical world, too — not just on your cell phone or computer, but physically present around us, processing and sensing information about the physical world and helping us with decisions that include knowing a lot about features of the physical world. As time goes by, we’ll also see these AI systems having an impact on broader problems in society: managing traffic in a big city, for instance; making complex predictions about the climate; supporting humans in the big decisions they have to make.
Intelligence of Accountability
A lot of companies are working hard on making machines to be able to explain themselves — to be accountable for the decisions they make, to be transparent. A lot of the research we do is letting humans or users query the system. When Cobot, my robot, arrives to my office slightly late, a person can ask , “Why are you late?” or “Which route did you take?”
So they are working on the ability for these AI systems to explain themselves, while they learn, while they improve, in order to provide explanations with different levels of detail. People want to interact with these robots in ways that make us humans eventually trust AI systems more. You would like to be able to say, “Why are you saying that?” or “Why are you recommending this?” Providing that explanation is a lot of the research that is being done, and I believe robots being able to do that will lead to better understanding and trust in these AI systems. Eventually, through these interactions, humans are also going to be able to correct the AI systems. So they are trying to incorporate these corrections and have the systems learn from instruction. I think that’s a big part of our ability to coexist with these AI systems.
The Worst Case Contingency
A lot of the bad things humans do to each other are very specific to human nature. Behavior like becoming violent when we feel threatened, being jealous, wanting exclusive access to resources, preferring our next of kin to strangers, etc were built into us by evolution for the survival of the species. Intelligent machines will not have these basic behavior unless we explicitly build these behaviors into them. Why would we?
Also, if someone deliberately builds a dangerous and generally-intelligent AI, other will be able to build a second, narrower AI whose only purpose will be to destroy the first one. If both AIs have access to the same amount of computing resources, the second one will win, just like a tiger a shark or a virus can kill a human of superior intelligence.
In October 2014, Musk ignited a global discussion on the perils of artificial intelligence. Humans might be doomed if we make machines that are smarter than us, Musk warned. He called artificial intelligence our greatest existential threat.
Musk explained that his attempt to sound the alarm on artificial intelligence didn’t have an impact, so he decided to try to develop artificial intelligence in a way that will have a positive affect on humanity
Brain-machine interfaces could overhaul what it means to be human and how we live. Today, technology is implanted in brains in very limited cases, such as to treat Parkinson’s Disease. Musk wants to go farther, creating a robust plug-in for our brains that every human could use. The brain plug-in would connect to the cloud, allowing anyone with a device to immediately share thoughts.
Humans could communicate without having to talk, call, email or text. Colleagues scattered throughout the globe could brainstorm via a mindmeld. Learning would be instantaneous. Entertainment would be any experience we desired. Ideas and experiences could be shared from brain to brain.
We would be living in virtual reality, without having to wear cumbersome goggles. You could re-live a friend’s trip to Antarctica — hearing the sound of penguins, feeling the cold ice — all while your body sits on your couch.
Final Word – Is AI Uncertainty really about AI ?
I think that the research that is being done on autonomous systems — autonomous cars, autonomous robots — it’s a call to humanity to be responsible. In some sense, it has nothing to do with the AI. The technology will be developed. It was invented by us — by humans. It didn’t come from the sky. It’s our own discovery. It’s the human mind that conceived such technology, and it’s up to the human mind also to make good use of it.
I’m optimistic because I really think that humanity is aware that they need to handle this technology carefully. It’s a question of being responsible, just like being responsible with any other technology every conceived, including the potentially devastating ones like nuclear armaments. But the best thing to do is invest in education. Leave the robots alone. The robots will keep getting better, but focus on education, people knowing each other, caring for each other. Caring for the advancement of society. Caring for the advancement of Earth, of nature, improving science. There are so many things we can get involved in as humankind that could make good use of this technology we’re developing
Related Posts
AIQRATIONS
Envisioning the future of work in the AI era
Add Your Heading Text Here
The age of Artificial Intelligence is upon us. Businesses and society are now looking towards AI for transformative outcomes. Businesses specifically are investing huge amounts of money on AI technology that will not only bring in efficiencies across multiple processes, but also unlock new revenue streams that will deliver quantum bottom-line impact. With the AI transformation playing out rapidly in our personal and professional lives, we need to deeply understand what the future of work will look like in the age of AI.
Within the business organization, there is a huge need to ramp up skill development interventions. The traditional roles of employees in an organization are rapidly changing as they are expected to stay in step with the developments in the world of AI. Business executives are now needed to deeply understand the potential of Artificial Intelligence and translate it into a viable roadmap for their business. Technology leaders need to take centre-stage in how their organizations adopt and harness the power of AI. The CIO is now fast becoming the key custodian of the most valuable resource in business today i.e. data. We are seeing a fast proliferation of digital evangelists and transformation officers who are charged with developing a framework within which the future of the organization will operate.
Ushering the Future of Work
On a tactical level, the burning question now is how subjects such as Data Science, Artificial Intelligence and Machine Learning can be infused in the career pathways of existing employees. How can organizations can build a steady pipeline of future talents with expertise in AI? Mastery of exponential technologies (AI, cloud computing, blockchain, IOT, cybersecurity etc.) will be remarkably important for both business and technical professionals. It is critical that transformation leaders and digital evangelists are well-versed in building internal capabilities that converge around the nexus of technology competencies, managing a hybrid workforce and ensuring the adoption and dispersion of AI.
For us to usher in the future of work powered by Artificial Intelligence, we need to ensure that a few key enablers come together. We need to expand the scope of executive education and the courseware that goes with it. Next, we need to seriously consider the potential impact of shorter, tactical courses. Corporations need to augment their training programs with shorter, time-boxed courseware that can deliver instant impact for the organization. Finally, we need to reimagine multiple, personalized career pathways. We need to move away from the traditional one-size-fits-all training and deliver more tailored, fit-for-purpose and relevant education to employees. Here are the three critical interventions for the business and technology leaders to execute in order to usher in the future of work that is enabled by AI.
1.Develop New Age Skills and Competencies in AI Technology
Upgrading the technology competencies and skills of business and technology leaders and their teams seems like the most critical first step. With the landscape of technology is rapidly evolving, we need to urgently upskill the present and future workforce to ensure a quality supply of talent. We need new age coursework in computer science that can hugely develop the ability of students in subjects such as Artificial Intelligence Machine Learning, Deep Learning, Natural Language Processing and other AI related concepts. On a broader scale, we also need Universities and colleges to improve the existing knowledge-base of AI enabling technologies such as Cloud, DevOps, Blockchain etc as well for the workforce.
At present we see a decent level of advancement in the field of computer science training and education. However, other trades within the technical area which also require to be upgraded as well. By doing so, we will be able to ensure a wholesome and future-proof education for the aspirants who wish to build their careers in the world of AI. For instance, students studying for a major in the field of electronics could shape their focus on mastering AI-enabling technologies such as GPUs and Quantum Computing. The students presently pursuing a specialization in mechanical engineering could achieve some level of sophistication in allied subjects of robotics and 3D Printing. Subject matter experts in the fields of industrial engineering, operations and supply chain would also do well to extend their skill sets to machine learning and blockchain as well thus creating a convergence of their interest areas and realities of the market – which will empower them with the required tools to succeed in the workplace of the future.
2. Reimagining the Process of Developing of New Age Technology
This interventions pertains to the embedding the design in the process of development and user adoption of AI technology. A commonly held misconception around design of a product or software is that it is restricted to simply the look or feel of the product or software. This is simply not true. As a Steve Jobs once proclaimed – Design is not just what is looks like and feels like. Design is how it works.
For the growth of AI to live up to the hype, we need to reimagine the process by which we develop new age technology. We need to build design into the fabric of the development and engagement process to ensure that the conceived idea is brought to fruition. Transformation evangelists aiming to spearhead the future of work should treat design as the creative process that aids the development of breakthrough products.
We are already seeing several inroads that design frameworks such as Human Centered Design and Empathy-led Design are making in the technology realm. These frameworks not only guide the development process, but also the user experience of the final software / hardware being developed. These frameworks do so by putting the user at the center of the journey.
3.Managing the ‘People’ of the Future Workforce
As I mentioned before the understanding of traditional roles in the future of work is rapidly changing. New roles are also emerging where data custodians and algorithm at scale engineers are put to work to develop the technology that powers the business of the future. On the macro level, we are seeing rapid changes in the paradigm of staffing as well. With the gig economy in full force, we are seeing more dynamic team compositions – where individuals with varied skill sets are required to continuously augment teams on a need basis. Advances in the fields of technology and management typically ordain large-scale transformation in the manner in which organizations manage their workforce.
On the micro level we are seeing that increased instances of automation are requiring managers to build and scale blended teams comprising humans and AI. This disruption requires a paradigm shift how the future workforce is managed. Teams in the future will showcase increased diversity and will be more interdisciplinary than ever before. Managing teams, careers and coaching for improved performance in the future will require a new set of metrics. Change evangelists need to devise these metrics – which will be imperative to how the workforce of the future is managed.
New technologies will require new approaches to project management and staffing. To ensure the supply of these critical skills, we also need courses that provide an education of subjects such as people management.
Our very understanding of our workplace is being rapidly disrupted. Increasingly a convergence of the right people, process and technology is required to unearth insights from a seemingly exponentially increasing size of data. To turn this data into actionable intelligence that powers business processes must be the focus of business and technology leaders – as well as educationists that build the talent pipeline for the future. Academia is required to urgently intervene and provide theoretical and practical training in AI subjects to both the existing workforce and the future pipeline of talent. We also need a dispersion of soft skills that will enable and evangelize this change. With growing interest and appreciation of technologies and platforms around Artificial Intelligence and the Digital Workplace, organizations need to ask tough questions of themselves. The time is now to consider the various forces at play. With increased AI augmentation and the transformation of processes and people that enable it, the topic of the Future of Work requires immediate and urgent attention.
Related Posts
AIQRATIONS
Redesigning exponential technologies landscape with AI & Blockchain fusion
Add Your Heading Text Here
AI and blockchain are two of the prime drivers in the technology space that catalyze the pace of innovation and demonstrating radical shifts across every industry. Each of this technical venture comes with a degree of technical complexity and business implications. Fusion of the two will be able to redesign the entire technical landscape along with a human effect from scratch.
Blockchain has its own limitations, it is a mix of technology-related and culture influence from the financial services sector, but most of them can be conceited by AI in a way or another.
The illustrated points below will be able to give a gist of the potentials that can be realized at the intersection of AI and Blockchain:
Energy consumption in mining: Mining has already proven that it requires tons of energy and is heavy in the economic perspective. AI has mastered in optimizing energy consumption across multiple sectors, similar results can be expected for the blockchain as well. AI can dramatically reduce the costs of maintaining servers and validate potential savings to lower investments in mining hardware.
Federated Learning: Blockchain is growing at a steady pace of 1MB every 10 minutes. Blockchain pruning is a possible solution through AI. A new decentralized learning system such as federated learning, for example, or new data sharing techniques to make the system more efficient.
Security: Concerns still exist on the security system of built-in layers and applications for Blockchain (e.g., the DAO, Bitfinex, etc.). The mileage created by machine learning in the last two years makes AI a solid candidate for the blockchain to guarantee secure applications deployment, especially given the fixed structure of the system.
Blockchain-AI Data gates: Blockchain has proven its ability for record keeping, authentication, and execution while AI drives decisions by assessing/understanding patterns and datasets, ultimately engendering autonomous interaction. The combo (AI and blockchain) will be become a data gate with these several characteristics that will ensure a seamless interaction in the nearest future.
Auditing of AI through blockchain: AI is seen as a black box ( complex set of calculations and algorithms) to distinguish patterns or trends. This makes it a difficult task for the humans to govern the choices taken by the artificial intelligence in yielding results. Accountability of the AI black box is seen as biggest challenge, considering concerns across the community for tampering or the altering happening to the calculations for the given input which eventually reflects in the output generated. This challenge can be easily comprehended by the blockchain innovation. Implementing robust auditing of these calculations utilizing the blockchain is seen as the biggest driver for enhancing the credibility of the business organizations and reinstating trust in the reliability of the information.
Leverage on Artificial Trust: Future roadmap of this fusion can successfully lead into creation of virtual agents that will create new ledger by themselves. Machine to machine interaction will be the new norm reinstating trust in a secure way to share data and coordinate decisions, as well as a robust mechanism to reach a quorum.
Machine performance monitoring and changes: Blockchain miners (companies and individuals) pour an incredible amount of money into specialized hardware components. AI can complement such as machine/equipment monitoring to deploy more efficient systems and do away with the unproductive heavy ones.
Blockchain for better information management: AI has a proven mechanism that runs of an incorporated or centralized database. In such a case, there are always chances for information occurrence of a mishap, i.e. gets lost, altered, or undermined.
Blockchain and artificial intelligence fusion can eliminate the above concern. Under the umbrella of blockchain the data is decentralized and stored within different nodes or systems. This reinstates trust on that your information is safe and unaltered. Most importantly the information is time-stamped and is in the sequence making recuperation less demanding and exact.
Some key challenges on the block: The fusion throws open technical and ethical implications arising from the interaction between these two technologies, such as the need to edit data on a blockchain and most importantly the duo pushing to become data hoarder. Experimentations alone will be able to provide a detailed answer on these lines.
In conclusion blockchain and AI are the two sides of the technology spectrum. One efficiently fosters centralized intelligence while the other promotes decentralized applications in an open-data environment. The fusion of the two will be an intelligent way to amplify positive externalities and advance mankind, most importantly reap the maximum potential for business needs.
Related Posts
AIQRATIONS
The New Age Enterprise – Enabled by AI
Add Your Heading Text Here
The excitement around artificial intelligence is palpable. It seems that not a day goes by without one of the giants in the industry coming out with a breakthrough application of this technology, or a new nuance is added to the overall body of knowledge. Horizontal and industry-specific use cases of AI abound and there is always something exciting around the corner every single day.
However, with the keen interest from global leaders of multinational corporations, the conversation is shifting towards having a strategic agenda for AI in the enterprise. Business heads are less interested in topical experiments and minuscule productivity gains made in the short term. They are more keen to understand the impact of AI in their areas of work from a long-term standpoint. Perhaps the most important question that they want to see answered is – what will my new AI-enabled enterprise look like?
The question is as strategic as it is pertinent. For business leaders, the most important issues are – improving shareholder returns and ensuring a productive workforce – as part of running a sustainable, future-ready business. Artificial intelligence may be the breakout technology of our time, but business leaders are more occupied with trying to understand just how this technology can usher in a new era of their business, how it is expected to upend existing business value chains, unlock new revenue streams, and deliver improved efficiencies in cost outlays. In this article, let us try to answer these questions.
AI is Disrupting Existing Value Chains
Ever since Michael Porter first expounded on the concept in his best-selling book, Competitive Advantage: Creating and Sustaining Superior Performance, the concept of the value chain has gained great currency in the minds of business leaders globally. The idea behind the value chain was to map out the interlinkages between the primary activities that work together to conceptualize and bring a product / service to market (R&D, manufacturing, supply chain, marketing, etc.), as well as the role played by support activities performed by other internal functions (finance, HR, IT etc.). Strategy leaders globally leverage the concept of value chains to improve business planning, identify new possibilities for improving business efficiency and exploit potential areas for new growth.
Now with AI entering the fray, we might see new vistas in the existing value chains of multinational corporations. For instance:
- Manufacturing is becoming heavily augmented by artificial intelligence and robotics. We are seeing these technologies getting a stronger foothold across processes requiring increasing sophistication. Business leaders need to now seriously consider workforce planning for a labor force that consists both human and artificial workers at their manufacturing units. Due attention should also be paid in ensuring that both coexist in a symbiotic and complementary manner.
- Logistics and Delivery are two other areas where we are seeing a steady growth in the use of artificial intelligence. Demand planning and fulfilment through AI has already reached a high level of sophistication at most retailers. Now Amazon – which handles some of the largest and most complex logistics networks in the world – is in advanced stages of bringing in unmanned aerial vehicles (drones) for deliveries through their Amazon Prime Air program. Business leaders expect outcomes to range from increased customer satisfaction (through faster deliveries) and reduction in costs for the delivery process.
- Marketing and Sales are constantly on the forefront for some of the most exciting inventions in AI. One of the most recent and evolved applications of AI is Reactful. A tool developed for eCommerce properties, Reactful helps drive better customer conversions by analyzing the clickstream and digital footprints of people who are on web properties and persuades them into making a purchase. Business leaders need to explore new ideas such as this that can help drive meaningful engagement and top line growth through these new AI-powered tools.
AI is Enabling New Revenue Streams
The second way business leaders are thinking strategically around AI is for its potential to unlock new sources of revenue. Earlier, functions such as internal IT were seen as a cost center. In today’s world, due to the cost and competitive pressure, areas of the business which were traditionally considered to be cost centers are require to reinvent themselves into revenue and profit centers. The expectation from AI is no different. There is a need to justify the investments made in this technology – and find a way for it to unlock new streams of revenue in traditional organizations. Here are two key ways in which business leaders can monetize AI:
- Indirect Monetization is one of the forms of leveraging AI to unlock new revenue streams. It involves embedding AI into traditional business processes with a focus on driving increased revenue. We hear of multiple companies from Amazon to Google that use AI-powered recommendation engines to drive incremental revenue through intelligent recommendations and smarter bundling. The action item for business leaders is to engage stakeholders across the enterprise to identify areas where AI can be deeply ingrained within tech properties to drive incremental revenue.
- Direct Monetization involves directly adding AI as a feature to existing offerings. Examples abound in this area – from Salesforce bringing in Einstein into their platform as an AI-centric service to cloud infrastructure providers such as Amazon and Microsoft adding AI capabilities into their cloud offerings. Business leaders should brainstorm about how AI augments their core value proposition and how it can be added into their existing product stack.
AI is Bringing Improved Efficiencies
The third critical intervention for a new AI-enabled enterprise is bringing to the fore a more cost-effective business. Numerous topical and early-stage experiments with AI have brought interesting success for reducing the total cost of doing business. Now is the time to create a strategic roadmap for these efficiency-led interventions and quantitatively measure their impact to business. Some food for thought for business leaders include:
- Supply Chain Optimization is an area that is ripe for AI-led disruption. With increasing varieties of products and categories and new virtual retailers arriving on the scene, there is a need for companies to reduce their outlay on the network that procures and delivers goods to consumers. One example of AI augmenting the supply chain function comes from Evertracker – a Hamburg-based startup. By leveraging IOT sensors and AI, they help their customers identify weaknesses such as delays and possible shortages early, basing their analysis on internal and external data. Business leaders should scout for solutions such as these that rely on data to identify possible tweaks in the supply chain network that can unlock savings for their enterprises.
- Human Resources is another area where AI-centric solutions can be extremely valuable to drive down the turnaround time for talent acquisition. One such solution is developed by Recualizer – which reduces the need for HR staff to scan through each job application individually. With this tool, talent acquisition teams need to first determine the framework conditions for a job on offer, while leaving the creation of assessment tasks to the artificial intelligence system. The system then communicates the evaluation results and recommends the most suitable candidates for further interview rounds. Business leaders should identify such game-changing solutions that can make their recruitment much more streamlined – especially if they receive a high number of applications.
- The Customer Experience arena also throws up very exciting AI use cases. We have now gone well beyond just bots answering frequently asked questions. Today, AI-enabled systems can also provide personalized guidance to customers that can help organizations level-up on their customer experience, while maintaining a lower cost of delivering that experience. Booking.com is a case in point. Their chatbot helps customers identify interesting activities and events that they can avail of at their travel destinations. Business leaders should explore such applications that provide the double advantage of improving customer experience, while maintaining strong bottom-line performance.
The possibilities for the new AI-enabled enterprises are as exciting as they are varied. The ideas shared in this article are by no means exhaustive, but hopefully seed in interesting ideas for powering improved business performance. Strategy leaders and business heads need to consider how their AI-led businesses can help disrupt their existing value chains for the better, and unlock new ideas for improving bottom-line and top-line performance. This will usher in a new era of the enterprise, enabled by AI.
Related Posts
AIQRATIONS
Top 10 Exponential Technologies Trends – 2019
Add Your Heading Text Here
Across the world of technology, we are seeing the proliferation of new age developments across software and hardware – titled “Exponential Technologies”. The term refers to a wide range of recent technology breakthroughs – Artificial Intelligence, Internet of Things, Cloud Computing, Augmented and Virtual Reality, Blockchain and the allied. They are collectively referred to as ‘exponential’ considering the humungous potential value that they could possibly add to business. As these technologies continue to mature in their development and adoption, the world is gaining a more concrete insight into the worth of these technologies and their use cases. 2019 will most certainly be the year where these technologies will go mainstream – and deliver exponential value to their proponents. With high investor interest (and money) riding on these new age technologies, I am confident that in 2019, there will be a high uptake in their commercialization. Here are the top10 trends that I foresee in 2019 in exponential technologies :
1. Blockchain Beyond the Hype
In 2018, there was no doubt a lot of excitement and buzz as technology vendors and investors started investigating blockchain and cryptocurrency. In 2019, expect blockchain to move beyond the hype and enter the mainstream. Gartner estimates that blockchain applications will create $3.1 trillion in business value by 2030. Over 2018, several tech-savvy businesses started their own experiments with blockchain in areas such as supply chain, which is ripe for a blockchain-powered disruption. Within blockchain, I foresee:
Increased collaboration between businesses and tech vendors to unlock the power of blockchain across multiple use cases. Given its immutable and decentralized nature, blockchain will be invaluable in sectors such as manufacturing, defense and financial services – and we will see innovative use cases coming out of these domains
Within blockchain, smart contracts specifically will gain immense traction. The business value of smart contracts is remarkably clear – they drastically reduce the time and effort for routine but lengthy paperwork processes, while maintaining the sanctity through a blockchain network
Due to the numerous crypto frauds seen uncovered in the last year, more and more sovereign governments will push legislation to regulate and establish clear rules around blockchain and cryptocurrency. I have no doubts that this will have a net positive impact – as it will demonstrably improve the consumer confidence and enterprise adoption for these technologies by laying down a clear legal framework for their use
2. 3rd Platform Technology to Accelerate Digital Transformation
A combination of social, mobile, data-driven decision-making and cloud infrastructure and processing is commonly referred to today as 3rd platform technology. In 2019, there will be no stopping the juggernaut of internal IT departments moving ever faster towards digital technology.
According to a research by IDC, it is expected that by 2023, 75% of all IT spending will be on such 3rd platform technology, with over 90% of all enterprises building “digital native” IT environments
Further advanced technologies such as distributed cloud, hyperagile app technologies and architectures, AI at the edge and AI-powered voice UIs will be central to how enterprises enable digital transformation using 3rd platform technologies.
This expansion in demand for 3rd platform technologies will be the outcome on increasing pressures on internal IT to become profit centers and unlocking new sources of revenue for the parent enterprise. Using easily scalable and replicable digital frameworks, early adopter IT departments would be able to commercialize this technologies to their competitors while giving their businesses critical competitive advantage
3. Quantum Computing to Come of Age
Quantum computing is a non-traditional form of computing operating on the quantum state of subatomic particles and representing information as elements denoted through quantum bits. The unmitigated rise in the development and permeation of quantum computing is the third key trend that I see for 2019. It is estimated that by 2023, 20% of organizations will carve out budgets for quantum computing projects, as opposed to less than 1% today.
With heavier software paradigms such as Internet of Things, Artificial Intelligence and blockchain achieving mainstream status, there will be large scale demand for quantum computing to come out of the shadows of academia and into business. Quantum computing will move well beyond a buzzword and will be part of multiple projects at an experimental scale at corporations.
Quantum Computing will succeed where traditional computing has failed, providing parallel execution and exponential scalability. Such systems will take on problems too complex for a traditional approach or where the latency for traditional algorithms would be untenable
Business leaders across multiple industries – automotive, financial, insurance, pharmaceuticals, military and research organizations – will see massive gains through the advancements in Quantum Computing .
4.Acceleration in the Pervasiveness of the Internet of Things
While Internet of Things has demonstrably hit mainstream status across industries such as consumer goods and retail, and use cases such as supply chain and logistics, we will see further acceleration in its adoption in 2019
IOT-enabled hardware devices will proliferate nearly all walks of human life. Devices from sensors, wearables, smart assistants and wearables will be a feature in everyday life for most individuals in the developed world and will be a key focus for powering digital transformation
With increasing demand for IOT-powered devices across use cases will definitively bring endpoint security into focus for enterprises. As IOT devices become the first frontier for communication with consumers through highly sensorized environments, we will see a rapid escalation in the adoption of endpoint security practices and software
To support this deep network of the Internet of Things will require an immediate focus on rapidly enabling 5G connectivity in 2019. Not having a robust underlying infrastructure to support IOT will be disastrous for businesses and individuals who will be highly reliant on it for their day-to-day activity.
5. Convergence of AI, Blockchain, Cloud and IO
Could a future software stack comprise AI, Blockchain and IOT running on the cloud? It is not too hard to imagine how these exponential technologies can come together to create great value. In 2019, I expect that we will see a strong spread of use cases that effectively combine these technologies.
Internet of Things devices will largely be the interface with which consumers and other societal stakeholder will interact. Voice-enabled and always connected devices – such as Google Home and Amazon’s Alexa will augment the customer experience and eventually become the primary point of contact with businesses
Artificial Intelligence frameworks such as Speech Recognition and Natural Language Processing are making huge advances. These will be the translation layer between the sensor on one end and the deciphering technology on the other end
Blockchain-like decentralized databases will act as the immutable core for managing contracts, consumer requests and transactions between various parties in the supply chain
Cloud will be the mainstay for running these applications requiring huge computational resources and very high availability. I expect more cloud vendors to come forward (Amazon and Google for instance already have) with specialized cloud frameworks to handle the torrent of requests that these type of applications would require.
6.New UI/UX Interfaces to Emerge on the Scene
To unlock and harness the true value of exponential technology it is incumbent that we do not rely only on existing paradigms of end-user interfaces such as web and mobile. We need to reinvent new paradigms and explore game changing new interfaces that will help usher better customer and user experiences.
Conversational platforms – ones which are primarily activated through voice and voice-recognition AI will conduct numerous exchanges on behalf of customers. Already we are seeing rapid adoption of conversational interfaces such as Google Home, Amazon Alexa and Apple’s Siri. These will only grow and prominence and entire CX use cases will be centered around these platforms
Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) will be increasingly leveraged across a vast selection of topical use cases. Incorporating these alongside traditional interfaces will be crucial to delivering the future of an immersive user experience. According to Gartner, we will shift from thinking about individual devices and fragmented user interface (UI) technologies to a multichannel and multimodal experience.
These immersive experience-led interfaces such as VR and AR will become increasingly popular, with 70% of enterprises experimenting with such technology for consumer and enterprise use and 25% of organizations deploying it into production.
7.Edge Computing to become an Enterprise Mandate
Simply put, edge computing is a computing topology in which information processing, and content collection and delivery, are placed closer to these endpoints. For reducing the latency running AI algorithms and eventual response times, edge computing will become an enterprise mandate for use cases involving a convergence of IOT and AI.
In 2019, adoption of edge computing will be driven by the need to keep the processing power close to endpoints as opposed to a centralized cloud server. Having said that, edge computing will not necessitate the creation of a new architecture. Cloud and edge computing will complement each other. Cloud services will be charged with centralized service execution, not only on centralized servers, but also across distributed servers on-premises and on-the-edge devices themselves.
Five years down the line expect to see specialized AI chips, supporting greater processing power, storage and other advanced capabilities. They will be incorporated into a wider array of edge devices. Not too far into the future, we will see 40% of organizations’ cloud deployments include an element of edge computing and 25% of endpoint devices and systems will execute AI algorithms.
We will see more intelligent and empowered edge computing devices as well. According to Gartner, storage, computing and advanced AI and analytics capabilities will expand the capabilities of edge devices through 2028.
8. DevOps Augmented by AI
Despite almost universal acceptance of the DevOps framework across global enterprises, adoption has been patchy and slow. This is due to numerous reasons, ranging from a distributed toolset and a paucity of expert practitioners. However with the emergence of AI, we will see an increased process automation between software development and deployment, accelerating the enablement of DevOps
AI-powered QA suites will increase the automation quotient in the DevOps process. Given the advancements seen in automation, AI will rapidly intervene in the QA process across unit testing, regression testing, functional testing and user acceptance testing.
DevSecOps will combine the power of DevOps and AI in the field of information security. A centralized logging architecture recording suspicious activity and threats combined with ML-based anomaly detection techniques will empower developers to accurately pinpoint potential threats to their system and secure it for the future.
AI will also break the cultural barriers that typically exist between developer and operations teams. . AI-powered systems will enable DevOps teams to have a single, unified view into system issues across a complex toolchain while improving the collective knowledge of anomalies detected and the pathways for redressal.
9.Autonomous Things on the Rise:
At present, we are seeing experiments at an advanced level in the field of autonomous things. Autonomous things comprise whole gamut of unmanned objects – from drones, cars and robots. In 2019, I expect there to be a steady rise in the adoption and appreciation of this area of technology
Autonomous things of today are largely centered around the current paradigm of basic automation and rigid if-else programming rules. The next revolution in the field of autonomous things will be by exploiting the power of AI to exhibit more advanced, proactive and multi-threaded behaviors
Demand for autonomous things will continue to grow, specifically for autonomous vehicles. According to a Gartner survey, by 2021, 10% of new vehicles will have autonomous driving capability, compared to less than 1% in 2017.
Robotics and drones powered by AI will be able to address more complex use cases bringing in further efficiencies to incumbent businesses in the field of logistics delivery, warehouse management and manufacturing
10. AI to Disrupt Cybersecurity
Finally, the last key trend in the exponential technologies space for 2019 pertains to cybersecurity. While this is a remarkably advanced field, we will see continued growth and evolution of cybersecurity in combination with artificial intelligence
Using anomaly detection and machine learning, AI will hugely disrupt the field of cyber security. Security practitioners will be empowered to identify intrusions and malafide behavior faster using automated, always-on algorithms to constantly survey the secured network for wrongful activity and address concerns before they break-ins occur
AI can be quickly training over a massive data set of cyber security, network, and even physical information. Cyber security vendors will soon roll out AI-enabled solutions that will learn at an abstract level to detect and block abnormal behavior, even when this behavior does not fit within a known pattern. I expect that in 2019 companies will incorporate ML into every category of cybersecurity products.
By extension, we will see a fight between good AI and bad AI in the domain of cybersecurity. There are genuine fears that the next generation of attacks will not be carried out by human hackers but pieces of code designed to rapidly infiltrate a secure environment. Countering that with so-called ‘good AI’ will be crucial in undermining the impact these fast-paced attacks can have
Related Posts
AIQRATIONS
Here are the top 10 AI trends to watch out for in 2019
Add Your Heading Text Here
The year 2018 will be remembered as the year that artificial intelligence stopped being on the periphery of business and entered the mainstream realm. With increasing awareness and capability of AI among the numerous stakeholders, including tech buyers, vendors, investors, governments, and academia, I expect AI will go beyond just tinkering and experiments and will become the mainstay in the business arena.
With an increasing percentage of these stakeholders professing their commitment to leveraging this technology within their organisations, AI has arrived on the world scene. We are sure to see transformative business value being derived through AI in the coming years. As we come to the close of 2018, let us gaze into the crystal ball to see what 2019 will hold for this game-changing technology:
The rise of topical business applications
Currently, we have a lot of general purposes AI frameworks such as Machine Learning and Deep Learning that are being used by corporations for a plethora of use cases. We will see a further evolution of such technology into niche, topical business applications as the demand for pre-packaged software with lower time-to-value increases. We will see a migration from the traditional AI services paradigm to very specific out-of-the-box applications geared to serve particular use cases. Topical AI applications in this space that serve such use cases will be monumentally useful for furthering the growth of AI, rather than bespoke services that require longer development cycles and may cause bottlenecks that enterprises cannot afford.
The merger of AI, Blockchain, cloud, and IoT
Could a future software stack comprise AI, Blockchain, and IoT running on the cloud? It is not too hard to imagine how these exponential technologies can come together to create great value. IoT devices will largely be the interface with which consumers and other societal stakeholders will interact. Voice-enabled and always connected devices – such as Google Home and Amazon’s Alexa – will augment the customer experience and eventually become the primary point of contact with businesses. AI frameworks such as Speech Recognition and Natural Language Processing will be the translation layer between the sensor on one end and the deciphering technology on the other end. Blockchain-like decentralised databases will act as the immutable core for managing contracts, consumer requests, and transactions between various parties in the supply chain. The cloud will be the mainstay for running these applications, requiring huge computational resources and very high availability.
Focus on business value rather than cost efficiency
2019 will finally be the year that majority of the executive and boardroom conversations around AI will move from reducing headcount and cost efficiency to concrete business value. In 2019, more and more businesses will realise that focusing on AI solutions that reduce cost is a criminal waste of wonderful technology. Ai can be used to identify revenues lost, plug leakages in customer experience, and entirely reinvent business models. I am certain that businesses that focus only on the cost aspect will stand to lose ground to competitors that have a more cogent strategy to take the full advantage of the range of benefits that AI offers.
Development of AI-optimised hardware and software
Ubiquitous and all-pervasive availability of AI will require paradigm shifts in the design of the hardware and software that runs it. In 2019, we will see an explosion of hardware and software designed and optimised to run artificial intelligence. With the increasing size and scale of data fueling AI applications and even more complex algorithms, we will see a huge demand for specialised chipsets that can effectively run AI applications with minimal latency. Investors are showing heavy interest in companies developing GPUs, NPUs, and the like – as demonstrated by Chinese startup Cambricon, which stands valued at a whopping $2.5 billion since its last round of funding this year. End-user hardware such as smart assistants and wearables will also see a massive increase in demand. Traditional software paradigms will also continue to be challenged. Today’s novel frameworks such as TensorFlow will become de rigueur. Architectural components such as edge computing will ensure that higher processing power is more locally available to AI-powered applications.
‘Citizen AI’ to be the new normal
One of the reasons we saw widespread adoption of analytics and data-driven decision-making is because we built applications that democratised the power of data. No longer was data stuck in a remote silo, accessible only to the most sophisticated techies. With tools and technology frameworks we brought data into the mainstream and made it the cornerstone of how enterprises plan and execute strategy. According to Gartner, the number of citizen data scientists will grow five times faster than the number of expert data scientists. In 2019, I expect Citizen AI to gain traction as the new normal. Highly advanced AI-powered development environments that automate functional and non-functional aspects of applications will bring forward to a new class of “citizen application developers”, allowing executives to use AI-driven tools to automatically generate new solutions.
Policies to foster and govern AI
Following China’s blockbuster announcement of a National AI Policy in 2017, other countries have rushed to share their take on policy level interventions around AI. I expect to see more countries come forward with their versions of a policy framework for AI – from overarching vision to allaying concerns around ethical breaches. At the same time, countries will also be asked to temper their enthusiasm of widespread data proliferation by releasing their own versions of GDPR-like regulations. For enabling an ecosystem where data can be used to enrich AI algorithms, the public will need to be convinced that this is for the overall good, and they have nothing to fear from potential data misuse and theft.
Speech Recognition will revolutionise NLP
In the last few years, frameworks for Natural Language Understanding (NLU) and Natural Language Generation (NLG) have made huge strides. NLP algorithms are now able to decipher emotions, sarcasm, and figures of speech. Going forward, voice assistants will use data from voice and combine that with deep learning to associate the words spoken with emotions, enriching the overall library that processes speech and text. This will be a revolutionary step forward for fields such as customer service and customer experience where many bots have typically struggled with the customer’s tone of voice and intonation.
The growth of explainable AI
And finally, with numerous decisions powered by AI – and specifically unsupervised learning models – we will see enterprises demand “explainable” AI. In simplified terms, explainable AI helps executives “look under the hood” to understand the “what” and “why” of the decisions and recommendations made by artificial intelligence. Development of explainable AI will be predicated on the need for increased transparency and trust. Explainable AI will be essential to ensure that there is some level of transparency (and potentially, learning) that is gleaned from unsupervised systems.
Convergence of AI and analytics
This is a trend that is a logical consequence of the decisive power of data in business today. In 2019, we will see a merger of analytics and AI – as the one-stop for uncovering and understanding insights from data. With advancements in AI seen so far, the algorithms are more than capable of taking up tasks that involve complex insight generation from multi-source, voluminous data. This convergence of AI and analytics will lead to automation that will improve the speed and accuracy of the decisions that power business planning and strategy. AI-powered forecasting will help deliver faster decisions, with minimal human interventions and create higher cost savings for the business.
Focus on physical and cybersecurity paradigms
Two of the domains ripe for an AI transformation are the fields of physical and cybersecurity. As intrusions into physical and virtual environments become commonplace and threats become hugely pervasive, AI will be a massive boost to how we secure these environments. Advances in fields such as ML-powered anomaly detection will drastically reduce the time required to surface potential intrusions into secure environments. This will enable organisations to better protect user data. When combined with Blockchain, AI will give cybersecurity a huge boost through decentralised, traceable databases containing valuable client and strategic information. On the physical security side, Computer Vision is rapidly gaining currency in the fields of physical intruder detection. Surveillance cameras, originally manned by security guards, will soon be replaced by AI-powered systems that will be able to react faster and more proactively to intruders that pose a threat to physical premises. When you combine that with face recognition, working with a database of known offenders, we will see a quantum drop in the time required to adjudicate and address cases of theft and unauthorised entry by law enforcement agencies.
In summary, the broad directions that I predict AI will take include interventions to make it more embedded, responsible, and explainable; convergence with other exponential technologies such as cloud, Blockchain, and IoT; cybersecurity; a greater proliferation and development of use cases; and great strides in the technology and its supporting infrastructure. Enterprises would do well to adopt this revolutionary technology and ensure a strong availability of talent to conceptualise, develop, and unleash value from AI applications.
Related Posts
AIQRATIONS
Re-Imagining the future of Global Capability Centers (GCC) in the AI and Digital era
Add Your Heading Text Here
Global Capability Centers (GCC’s) in India are at an important inflection point. As multinational corporations continue to move to a digital and AI-first paradigm, they are looking at their GCC’s to provide emerging technologies leadership to drive this transformation.
It’s been an exciting evolution for the GCC’s over the last few years. In the not too distant past, multinational corporations look at their offshore captives to contain costs for repetitive, low-value business processes. From there, we saw shared services centers capture a larger slice of the pie in day-to-day business operations of their MNC counterparts, alongside developing centers for research, development, innovation and business transformation. Captives morphed into capability centers, wherein new skills and competencies could be swiftly incubated and scaled.
The numbers pan out well for GCC’s – with nearly a million professionals employed, across 1,500 GCC’s in India, netting an export revenue of over $23mn, the sun is shining brightly for GCC’s. Indian GCCs account for over a fifth of IT-BPM exports and a fourth of India’s export employees. According to a report by analyst firm Nomura, GCCs are growing faster today in terms of revenue attribution than their large outsourcing counterparts (12.4% CAGR for GCCs vs 10.7% for service providers, over the last 5 years). 27% of US-based Fortune 2000 companies already have GCCs in India. GCCs are becoming the centralized technology procurement arm for MNCs as 50% of the Fortune 2000 are planning to shift vendor management to their offshore entities, for the synergistic benefits, as well as to drive outsourcing costs down.
Here’s the inflection point though – as MNCs grapple in an uncertain business environment and business models, changing consumer preferences and consumption modes and digitalization in most areas of the business, they are looking at their GCC leaders to provide the technology disruption that their traditional business desperately needs. For the past few years, analytics and AI has taken a robust foothold in the GCCs, with their India-based talent powering evidence-backed, data-driven decisions for their parent organizations. The next generation of the GCC’s will be expected to provide autonomous decision support and an AI-augmented human intelligence. GCC leaders will need to harness the burgeoning power of AI technologies to power corporate decisions, automate repetitive, low-value tasks through robotization and reinvent business models for the continued success of their business in the new world of business. Digital will be the core element of business model re-design.
Of the multiple reasons driving insourcing decisions, perhaps the most important one is the strong business process integration that GCCs provide. Rather than relying on the volume provided by outsourced companies, MNCs realize that they need to meld quality output with high productivity, delivered by professionals that can reimagine current business functions. Enterprises are increasingly seeing the long-term benefits of investing in a world-class offshore capability center and prioritizing driving investments to these entities. With great investments come great expectations – they need their offshore GCC leaders to have a multidimensional business orientation and act as the key intermediary between the strategic boardroom and the operational engine room.
The future of the GCC is digital and AI-first and to that end, we need to re-imagine the future of the GCC in that direction. Here’s a primer on how AI transformation can be shaped within GCC’s :
Assess Maturity and Develop Roadmap
The first step is doubtless to assess the current state, the desired future state and the gap that exists between the two. Assessments and roadmap development need to be performed in two vital areas – technology and people.
Technology Assessment and Roadmap:
The first step is foundational to the AI and digital reengineering for the GCC. GCC leaders need to take stock of all the processes performed at the center, along with the tools and software driving them. The first step is to classify these processes into traditional vs digital IT. Once this is done, leaders need to further split the traditional IT processes into 3 sub-segments – reimagine, leave as-is or scrap. Whether a software-enabled process has strong business justification for the present and the future will define whether it is scrapped or not.
For the processes that do not get junked, leaders need to check if there are powerful, maturing digital options available – that can improve speed, accuracy and outcomes from the process through digital reengineering. If there is – then that process is ripe for reimagination. If not, and there is a strong business case to keep it as-is, leaders need to put it on a ‘Watch list’ and keep track of technology evolution and commercial-grade solutions emerging in this space. Further, for the reimagined processes, GCC leaders need to also assess the range of technology options available – from RPA to Deep Learning – and develop a roadmap for the automatization of these processes. For instance, deep learning could be progressively applied for high-value tasks which execute complex decision-making, while RPA could be quickly implemented to automate routine tasks, such as report generation etc.
People Assessment and Roadmap:
A similar exercise should also be done for the GCC employees. Leaders need to take stock of the talent pool available within the GCC and map it with the future skills required. Is there enough talent within the current GCC that can be updated with digital skills to develop and run future applications? Or would there be a need to augment internal talent with external consultants – is a key question to ask on the journey to GCCs’ digital transformation. This skill assessment needs to be combined with internal trainings to move existing employees into new roles. For instance, could a portion of the analytics team be moved into automated insight generation, using machine learning? Or can some of the better developers be trained into full-stack developers to build the technology backbone for the organization?
This kind of skill assessment and continuous training will provide the GCC leaders with a continuously updated understanding of the human assets available that can drive enterprise digital transformation. Where certain niche skills may not be available, leaders can look to outsource from topical service providers to help set up their processes and transfer the day-to-day system updates back to the GCC.
Re-engineering the Entity
Once the skills and technology are suitably assessed, the next step is to gear the GCC towards a new set of processes and practices that will help it sustain this digital drive. The new digital and AI-first GCC needs an entirely new set of standards to measure business value delivered and technology performance. This requires a reengineering exercise to change processes, evaluation metrics, and mindsets. Three key factors are at play here:
Process Augmentation:
First, the GCC needs to identify a whole new set of program management practices to build and sustain a digital mindset.
The first of these is the Automation Scorecard. Once the technology assessment and roadmap are completed and the automatable processes are identified, they should be listed onto this scorecard to track and monitor the extend of automation performed on each process.
The second intervention is progressively prioritizing scalable, cloud-based, digital-first software. There is often a strong proclivity to trust and use traditional IT software and this mindset needs to be evolved towards more SaaS-based, API-driven software – which can help organizations dynamically scale the costs and utilization up or down, based on business needs. By moving to a more service-oriented architecture model, GCCs can improve system availability and uptime.
The final intervention is people augmentation. While GCCs have progressively started and scaled their accelerator programs to identify breakthrough technologies solutions, they need to take the people and software integration to the next level. The mandate for these accelerators should be closely tied to the business expectations (as per the technology assessment and roadmap and automation scorecard mentioned above) and their success should be measured through the exponentiality of the results they deliver, not just basic productivity improvements. Additionally, GCC leaders should also seek process and technology guidance from outside consultants so that the accelerator remains true to its purpose and channels the needs of the business
New Metrics Development
The world of digital and AI will require an entirely new set of metrics. While cost optimization and quality of outcomes will remain paramount for any GCC, leaders need to reinvent the intermediate metrics that contribute to productivity and quality metrics. For instance, GCC leaders need to actively capture the extent of automatization delivered in the enterprise, by measuring the man-hours saved (total and monthly). Additionally, they could also leverage the automation scorecard to show progress on the automatization of processes. Thirdly, they need to measure and showcase the quantum of speed and accuracy that is delivered by the new digital process as opposed to traditional IT to their HQs, to highlight outcomes and achievements. Fourth, GCC employees need to be measured for their adeptness at emerging technologies, how much training has been delivered and internalized by employees.
Evangelize Reverse Innovation
While several GCCs do deliver reverse innovation, the research and development of industry-specific commercial-grade AI and digital solutions should be one of the top evaluation criteria for GCC leaders. Indian executives have a strong frugal mindset, which can naturally deliver innovation under cost constraints – which can then be progressively leveraged by others in similar markets and situations. Identifying processes where reverse innovation can be applied and then commercialized upstream needs to be a top priority for GCC leaders to improve the revenue attributed to their entities. To do so, it is critical to first assess which technology and operational assets they own, that could be useful across new markets.
As Cisco VP – Dan Scheinman once famously said, “We came to India for the costs, we stayed for the quality, and we are now investing for the innovation”. GCCs have quickly moved from invisible, low-value business processing units to invisible high-value technology centers to now visible, high-value AI and Digital innovation hubs. The expectation is to now deliver the digital and AI-centric future for their parent enterprises .