Add Your Heading Text Here
The AI Race is fast heating up. While private enterprises tend to view this through a lens of achieving competitive advantage through breakthrough business and process innovation, there is a much larger play between nations competing to achieve supremacy in the domain of Artificial Intelligence. Across the globe – from Japan in the east to United States in the west – every major industrialized nation is ramping up their efforts (and rhetoric) to build indigenous AI capability. These economies have shown great interest, from the federal to the local levels, to achieving the much-vaunted status as the world leader in Artificial Intelligence. While the approaches by each country may differ – the end goal is some variation of achieving a preeminent position as the single distinguished player in the field of AI.
At this point, it is natural to ask – why? Why are entire economies and governments frantically organizing themselves to win in this race? The answer lies mainly in the size of what is at stake. According to a recent report by global consulting company PwC, AI’s contribution to the global economy is expected to be $15.7 trillion by 2030. The nation that serves the largest portion of this need will not only have the highest revenue, but also the highest number of in-demand professionals, the lowest dependency on other nations in this massive field of work, alongside being the singular force to reckon with in the future of the world.
This might explain why, today, the US and China are at the forefront of this technology. According to the same report, China and North America will see the largest part of the global value-pie ($7trillion and $3.7 trillion respectively). When the stakes are this high, you probably do not want to depend on the benevolence of others. You ought to ensure that every capability you require is available within your own shores. In China, the government stands strongly behind AI adoption, announcing their intention to become “a principal world center of artificial intelligence innovation” by 2030. On the other hand, the US has the highest number of AI startups and one of the deepest wells of venture capital to fund the startups’ endeavors. Not to mention, they are also home to larger tech corporations – Google, Amazon, Facebook, Microsoft, IBM etc. – which are also pioneering AI research in their own way.
While the US and China have taken a quantum leap ahead over their other competitors, the field of AI is not exactly a duopoly. While these two are clearly the leaders across any measurement criteria that you would employ, there are several others in the fray – Japan, South Korea, Germany, France, the UK, Canada, Israel, Russia and India – who are all in various stages of launching their visionary plans and developing on-ground leadership through either private enterprise, public support – or both.
With the size of the prize outlined, the next logical question would be – how is India doing in this space? What steps is India taking to ensure that we do not fall by the wayside as the world runs to win this monumentally important race?
There’s some good news and some not so good news on that front. For one, India is not yet considered among the absolute top rung of AI superpowers today. While we do have significant numbers of STEM graduates passing through academia each year, most of them are currently involved in the so-called lower end of the IT value chain – infrastructure services and maintenance etc. On the bright side, India is uniquely positioned to deliver strong AI leadership, assuming we take steps in the right direction on the policy side, as well as in industry-academic collaboration.
Why do I feel India is uniquely positioned? Consider the following:
- India continues to have a strong continuing focus on STEM education. As AI enters the mainstream curricula of our universities, we will realize the benefits of having a robust intellectual capital in this arena.
- Typically, it is data that powers an AI application. India, with the second largest population in the world (and increasingly connected to smart devices) has the potential to not only generate massive data sets, but also one of the most diverse set of data due to the inherent diversity across class, language and other cultural aspects – which can power the most enriched applications of AI
- There is a strong impetus on the policy front in India for AI – with Digital India, Skill India programs started by this government, in addition to constituting NITI Aayog – a national-level think-tank to execute on a vision rich with emerging technology
So how can we combine India’s inherent advantages, with some strong moves already made in the AI space, to possibly achieve AI supremacy in the near future? Here are three clear areas that require a high degree of attention and action to fulfil that vision.
- Lead with Policy
With a strong, forward-looking government, India is already making the right noises on the development of AI. NITI Aayog – the think-tank I had mentioned earlier – has constituted a committee to study and deliver a National AI Strategy for India. In their June 2018 discussion paper, they identified 5 areas where India is uniquely poised to deliver AI leadership due to our intrinsic advantages – healthcare, agriculture, education, smart cities and smart mobility and transportation. While the Aadhar program has had its critics, it is likely to be instrumental in building a massive training set of citizen data, enabling India to build some thought-leading application in AI. The government has also pledged to put their money where their mouth is – with $480mn projected to be spent on the Digital India program in 2018. While this spending pales in comparison to the spending of other countries (China has committed $150bn up to 2030), it will be instrumental for founding a strong test-bed for incubating our AI vision. The government is also planning a national data and analytics platform in collaboration with private players to utilize the huge amount of data with the help of AI.
2. Facilitate through Academia
Close to 2.6mn students graduated out of STEM fields from India in 2016. While I mentioned that these graduates have anywhere between no to a rudimentary understanding of AI today – it does represent the huge footfall seen in these fields, who would be well-served through a healthy training in AI-centric technologies.
The more pressing problem can be seen in core AI research. While India is ranked 5th in the world today terms of number of papers published (14,864 between 2010-16), we are still a fair way behind the US (63,344) and China (39,820) on this metric. Worse still, India ranks a distant 19th on the metric of H-Index (measured between 1996 and 2016), which leads to a concern on whether our current research is citation-worthy or rooted in business applicability. So, while the appetite for research exists, the contribution to the overall body of knowledge still needs some upgrading.
To address this, the aforementioned NITI Aayog discussion paper, recommends the set-up of a 2-tier integrated approach for boosting research in both core AI and applied AI. The first – COREs (Centers of Research Excellence in Artificial Intelligence) will be focused on developing a better understanding of existing core research and pushing technology frontiers through creation of new knowledge. The second – ICTAI (International Centre for Transformational Artificial Intelligence) will have a mandate of developing and deploying application-based research through Private sector collaboration. This framework would also consist an umbrella organization addressing issues relating to access to finance, social sustainability and the global competitiveness of the technologies developed. This body would be similar to the Campus for Research Excellence and Technological Enterprise (CREATE), Singapore program or Innovate UK.
3. Implement through Private Industry
While the first two points deal with strengthening the backbone of AI research and education, this final aspect deals with building high-class industry-grade IP with wide applicability. Due to a huge democratization in information, both large tech corporations and startups are aware of the challenges that can be solved through AI and are building solutions to address these challenges. Behemoths IT and consulting players are already investing in academic partnerships to set up a base for IP development and workforce training. Startups too, while not similarly endowed, are looking to build visionary products that will transform the industry through collaboration with academia. Through such an industry-academia collaboration, Indian technology companies would be able to foster synergy by developing bleeding edge research in India which can be gainfully employed to solve global challenges. Extending the Make in India initiative would be crucial to ensure that the intellectual property of the work done by Indians stays in the home country, boosting our credibility in this space.
In conclusion, while India is already among some of the top nations in the world today in the field of Artificial Intelligence, there still is a long way to go to hit the absolute pinnacle in this space. However, given that AI is still is in a nascent stage, there is significant scope for India to still emerge as the leading light in this space. With this sustained and rapid pace of progress, I am certain that India will soon emerge as the preeminent leader in the field of AI.