The gold rush for AI – silicon valley vs. China – a perspective hard to ignore
Add Your Heading Text Here
The buzzword among the business and tech communities in China for the past year has been ‘AI’, or artificial intelligence. Artificial intelligence, which allows software to “learn” human ways of thinking, is being incorporated into the largest e-commerce platforms, including Baidu, Alibaba, and Tencent, as well as into data-intensive traditional sectors. With strong government backing and concentrated research in this area, AI is poised to drive China’s economy forward toward higher levels of growth.
China is developing artificial intelligence in improving the capabilities of robotics, developing driverless cars, divining consumer preferences, inventory forecasting, selling enhanced products, and marketing goods and services. According to Liu Lihua, Vice Minister of Industry and Information Technology, China has thus far applied for 15,745 AI patents.
China plans to launch a national AI plan, which will strengthen AI development and application, introduce policies to contain risks associated with AI, and work toward international cooperation. The plan will also provide funds to back these endeavors. Some municipalities also support AI research programs. Beijing, for example, is home to the CAS Institute of Automation, a consortium of universities and firms that provides venture capital funding of 1 billion RMB ($150 million) to AI development. Zhejiang province has also embraced AI programs. Already, Geely Automobile in Zhejiang is using intelligent manufacturing and internet marketing services based on AI to boost sales.
BAT – Chinese AI Frontier Giants
China’s BAT, or Baidu, Alibaba and Tencent, is leading the way for AI in China. Baidu was the first Chinese company to embark upon research in AI, using a system known as Duer to be used in home devices and driverless cars. Driverless auto software provided by Baidu will be made available to car manufacturers under the Apollo Project. Alibaba is using AI to forecast regional order quantities and to improve logistics efficiency, while Tencent has released a platform for deep learning using social data.
Baidu, Alibaba and Tencent have been vying for top talent in AI in order to become leaders in this area. Making headlines several days ago, Alibaba lured Ren Xiaofeng from Amazon.com to lead its own technology lab, which aims to make headway in artificial intelligence. Tencent brought Baidu’s AI expert Zhang Tong on board in March. In 2014, Baidu poached Andrew Ng from the Google Brain project to lead the Baidu Research Institute (though he recently stepped down).
Bay Area dominates this year’s AI funding
Venture investment in startups that are applying artificial intelligence or machine learning has more than tripled in the U.S. since 2013, according to PitchBook Data, with about 60 percent of that coming to founders in the Silicon Valley Bay Area.
The Seattle investment research firm put together a ranking of the top 20 AI deals done around the world this year for me while I was researching this week’s Silicon Valley Business Journal cover story. Almost half of the startups that were funded and nearly three-quarters of the investors involved were from San Francisco and the Silicon Valley region.
The new era in Silicon Valley centers on artificial intelligence and robots, a transformation that many believe will have a payoff on the scale of the personal computing industry or the commercial internet, two previous generations that spread computing globally. Computers have begun to speak, listen and see, as well as sprout legs, wings and wheels to move unfettered in the world.
Silicon Valley’s financiers and entrepreneurs are digging into artificial intelligence with remarkable exuberance. The region now has at least 19 companies designing self-driving cars and trucks, up from a handful five years ago. There are also more than a half-dozen types of mobile robots, including robotic bellhops and aerial drones, being commercialized.
Funding in A.I. start-ups has increased more than fourfold to $681 million in 2015, from $145 million in 2011, according to the market research firm CB Insights. The firm estimates that new investments will reach $1.2 billion this year, up 76 percent from last year.
Even Silicon Valley’s biggest social media companies are now getting into artificial intelligence, as are other tech behemoths. Facebook is using A.I. to improve its products. Google will soon compete with Amazon’s Echo and Apple’s Siri, which are based on A.I., with a device that listens in the home, answers questions and places e-commerce orders. Satya Nadella, Microsoft’s chief executive, recently appeared at the Aspen Ideas Conference and called for a partnership between humans and artificial intelligence systems in which machines are designed to augment humans.
The auto industry has also set up camp in the valley to learn how to make cars that can do the driving for you. Both technology and car companies are making claims that increasingly powerful sensors and A.I. software will enable cars to drive themselves with the push of a button as soon as the end of this decade — despite recent Tesla crashes that have raised the question of how quickly human drivers will be completely replaced by the technology.
AI is in it for the long-haul
Whenever there is a new idea, the valley swarms it. But you have to wait for a good idea, and good ideas don’t happen every day. Silicon Valley’s new A.I. era underscores the region’s ability to opportunistically reinvent itself and quickly follow the latest tech trend. This is at the heart of the region’s culture that goes all the way back to the Gold Rush. The valley is built on the idea that there is always a way to start over and find a new beginning.
Related Posts
AIQRATIONS
Future of HR :Redefined by AI – perspectives for chief people officer
Add Your Heading Text Here
Artificial intelligence is transforming our lives at home and at work. At home, you may be one of the 1.8 million people who use Amazon’s Alexa to control the lights, unlock your car, and receive the latest stock quotes for the companies in your portfolio. In total, Alexa is touted as having more than 3,000 skills and growing daily. In the workplace, artificial intelligence is evolving into an intelligent assistant to help us work smarter. Artificial intelligence is not the future of the workplace, it is the present and happening today.
Investment in AI has accelerated from $282 million in 2011 to $2.4 billion in 2015, a 746% increase in five years. In 2016, this continued to increase with roughly another $1.5 billion being invested in more than 200 AI-focused companies in 2016. AI is becoming indispensable in the healthcare industry. Will we be saying the same thing about CHROs using artificial intelligence in the workplace? Will we consider it unthinkable not to use intelligent assistants to transform recruiting, HR service centers, and learning and development? I believe the answer is yes. HR leaders will need to begin experimenting with all facets of AI to deliver value to their organizations. As intelligent assistants become more widely used in our personal lives, we will expect to see similar usage in the workplace.
For employees, chatbots deliver an unmatched level of employee experience, from real time answers for HR questions to personalized learning and development. In addition, they are critically important to the 3.7 million workers, or 2.8% of the workforce, who work remotely at least half time and do not have easy access to an HR department.
For HR leaders, chatbots are well suited to improving talent acquisition and on-boarding processes by increasing speed and providing greater consistency in answering frequently asked HR questions, improving the talent acquisition process, and enhancing the online learning experience.
AI Chatbots To Answer Frequently Asked Employee Questions
Let’s consider Jane, a chatbot created by Loka, in 2014. Jane provides real time answers to a range of HR questions, including, “Are we off on President’s Day?” or “What are my dental benefits?” Jane is capable of answering any question and answer set that can be stored in a database. In addition to answering frequently asked questions, CEO Bobby Mukherjee says Jane is designed to proactively promote benefits to employees they may not yet know about. Says Mukherjee, “Companies are coming up with lots of new benefits, but they do not have an effective way to promote usage.” Imagine Jane can reach out to employees with, “Hey John, have you tried our Yoga class that we are offering in your building today at 3:00 pm? Click here to automatically book yourself. You’ve been working hard and you deserve it!”
Another value of Jane is the opportunity to track employee issues using real time analytics and then apply sentiment analysis to address these issues. Let’s say that a majority of employees are asking questions about late payments for travel reimbursements. This data can indicate something in the system isn’t working correctly. Before things become a full blown issue, HR leaders can uncover the issue and communicate a solution.
Granted there will be questions Jane cannot answer yet, but the opportunity is here to provide AI for all types of HR related questions that might be coming into your HR Service Center.
AI To Improve Talent Acquisition
Talent acquisition and new hire on-boarding are ripe areas where intelligent assistants can tap multiple data sources to develop candidate profiles, schedule interviews, and make decisions about prospective job candidates.
Talla is a chatbot designed to augment the HR processes that source job candidates. Talla can provide a set of interview questions based upon the role, and can even conduct a Net Promoter Score survey following the recruiting process. Rob May, CEO of Talla, sees, “an intelligent assistant as being able to augment a mid-level HR professionals’ job so she can focus on more strategic HR issues.” The vision behind launching Talla is to ultimately become a real time advisor to HR professionals in how they source and on-board new hires.
May estimates that Talla will save many hours in recruiting and on-boarding new hires and will greatly enhance the employee experience. Improving talent acquisition and new hire on-boarding is a priority for CHROs. According to Eric Lesser, Research Director of IBM Institute for Business Value, “More than half of the CHROs surveyed believe cognitive computing will affect a wide range of roles in the HR organization, ranging from senior executives to individuals working in service centers.”
AI for Talent Management Inside Workplace
AI can also be used for intricate data collection of employees in their workplace in an automated fashion. One option would be to track the movements of the employees inside office space to assess their activities on ground. Companies can track employees’ whereabouts in the office. Bluvision makes radio badges that track movement of people or objects in a building, and display it in an app and send an alert if a badge wearer violates a policy set by the customer—say, when a person without proper credentials enters a sensitive area. The system can also be used to track time employees spend, say, at their desks, in the cafeteria or in a restroom.
Bluvision’s AI compensates for the margin of error in determining location of radio transmitters, allowing the system to locate badges with one-meter accuracy, according to COO John Sailer. Without it, people near one another would be indistinguishable, and the positions of doors, desks, walls and the like—useful information for security and optimizing use of space—would be blurred.
The system is also useful in situations where contractors are paid hourly or piecemeal, such as on a construction site, where subcontractors must complete work in order and on schedule to avoid cost overruns. Although Bluvision tracks individuals, it can also be set to present only aggregate trends. That allows customers to take advantage of location tracking without breaking privacy laws or agreements protecting personally identifying information about employees.
The limits of AI Currently
For all their promise, these systems raise a number of issues. Some are evident today, in the early stages of adoption, while others may take time to become clear.
Privacy is an obvious concern when tracking employees, particularly personal behavior. Systems that sort job candidates also raise questions. Entelo’s may emphasize people with a large online footprint; SAP’s might prefer those who best match characteristics of people who were hired in the past.
Also, the limitations of current approaches boil down to the difficulty of drawing valid conclusions from incomplete data. For instance, measurements of employee performance at any given company are based on the set of people hired and lack information about candidates who were passed over—or weren’t even interviewed—who may have, say, produced more in less time. Aggregating data from many customers, as some larger vendors including SAP and Workday do, can reduce bias, but the problem remains that different companies may not track the same variables in the same way, and subtle but important ones are likely to be missing.
Related Posts
AIQRATIONS
How Startups can leverage AI to gain competitive advantage
Add Your Heading Text Here
Despite nationwide venture funding hitting a multiyear low, venture capital deployed to artificial intelligence (AI) startups has reached a record high.
Last year, VCs struck 658 deals with AI companies, nearly five times the number that signed on the dotted line four years before. To date, the market contains 2,045 AI startups and more than 17,000 market followers, with more joining by the day.
AI’s rapid rise has swept up startups and enterprises alike, including U.S. automaker Ford, which recently bought AI startup Argo for $1 billion. The acquisition cements experts’ suspicions of Ford’s coming foray into self-driving technology. Other startups — so many, in fact, that entrepreneurs need a “best of” guide — are betting heavily on bot platforms.
So while we’ve just glimpsed the tip of this innovation iceberg, it’s clear AI is no longer some nebulous technology of the future. Sixty-eight percent of marketing executives, report using AI in their operations. For a technology that only went mainstream in 2016 and barely existed four years ago, that’s a remarkable adoption rate. How, regardless of the platform you choose, can you join forward-thinking entrepreneurs and build your business with AI? Over the last few years , I have worked closely with multiple start ups across genres and ,So far, four ways stand out:
1. Get to know your next customer.
A politician wouldn’t dream of delivering a small-town stump speech to her urban constituents. Why? Because you’ve got to know your audience. The same is true for entrepreneurs. Before you broadcast your message, you need to know who you’re trying to reach.
Node, an account-based intelligence startup, uses natural language processing — a fancy term for teaching a computer to understand how we humans speak and write — to develop customer profiles. Node is crunching vast swaths of data to connect the dots between marketers and the companies they’re trying to reach.
Once you have ample customer data — Node uses data crawlers to scrape information from social media, news sites and more — pair machine learning and natural language processing models to extract sentiments from unstructured data. Then, just as senators segment constituents into demographic groups, Node uses cluster analysis to sort clients’ customers into like cohorts.
2. See how people truly use your product.
If, heaven forbid, you forgot to tag your neighbor at last week’s house party, Facebook was no doubt there to remind you of your error. How does Facebook know which of your friends you left untagged? It has gone all-in on an AI technique called convolutional neural networks.
Convolutional neural networks, which loosely model how the brain’s visual cortex interacts with the eyes, work by separating an image into tiny portions before running each of those specks through a multilayered filter. It then “sees” where each speck overlaps with other parts of the image, and through automated iterations, it puts together a full image.
Many different ways exist to apply this technology, but retail businesses can start with image classification. Try using a convolutional neural network to break down photos of your products posted online. The model can identify customer segments that frequently use your product, where they’re using it and whether they commonly pair other products with yours. Essentially, this automated image analysis can show you how your products fit into customers’ lives, allowing you to tailor your marketing materials to fit.
3. Get inside the user’s head.
Success on social media requires careful listening and quick action. When a social campaign isn’t working, it’s best to put it out of its misery quickly. On the other hand, when one strikes a chord with customers, doubling down pays dividends.
But to do so, you need real-time insights about customers’ reactions to your content. Fortunately, AI can take the emotional temperature of thousands of customers at once. Dumbstruck, a video-testing and analytics startup that I advise, has added natural language processing to its emotional analytics stack. This allows it to provide moment-by-moment insights into viewers’ reactions to media. Dumbstruck’s model grows stronger with each reaction analyzed, producing a program that perceives human emotions even better than some people can.
4. Provide affordable, always-on support.
Customer service is — or should be, according to consumers — the department that never sleeps. More than half of people, 50.6 percent to be precise, believe a business should be available 24/7 to answer their every question and concern. When asked whether businesses should be available via a messaging app, the “yes” votes jump to nearly two in three.
Fortunately, bots don’t sleep, eat or go off-script. A well-built bot can offer cost-effective, constant customer service. Of course, grooming your bot to serve customers requires front-end data — ideally hundreds of thousands of example conversations — but you can get started with a human-chatbot hybrid. With this approach, the bot answers run-of-the-mill questions, while a human takes over for the more complex ones. Then, as the data builds and the model matures, you can phase in full automation.
AI’s Impact on small businesses and startups
Small enterprises will begin to use the tried and tested platforms in innovative ways. While startups will gain a competitive edge in capturing the AI market, the larger enterprises will provide the infrastructure to startups for building innovative services. It is somewhat similar to the business model followed when the cable technology was introduced.
Startups leveraging AI technology for industry verticals, like agriculture, manufacturing or insurance are bound to be successful.
Startups can empower established insurance companies like State Farm, Allstate and Farmers with technology enabling them to become more proactive in policy planning. For instance, a new AI insurance underwriter will help to forecast natural disasters and accidents, and adjust premiums.
The predictive decision-making capabilities are more than just a novel technology. You can manage food supply chains with the help of AI. Startups could develop end-to-end farming solutions with AI analytics for reducing food waste. It will have a huge impact in tackling global issues of hunger and famine.
Whether serving as a research assistant in a large corporation, acting as a voice-activated resource in difficult medical procedures, AI is fast becoming a reality. The AI revolution will benefit new players who learn quickly to use it to their advantage. AI will be a fundamental predictive enabler helping us solve large-scale problems, and startups are poised to gain a competitive edge.
So what’s the ground level AI sentiment of Startups? – Mix of Hope & Fear
Regardless of which industry you operate, be careful that AI will affect your world in some way. Look into what is present now and how you can utilize it to gain a competitive edge.
The possibilities with AI are endless; enterprises will become efficient, intelligent and cost-effective.
Undoubtedly, the digital revolution and AI will advance to a point where it will offer real-world benefits to every business- large and small.
Mark Zuckerberg says, “We’re working on AI because we think more intelligent services will be much more useful for you to use.”
AI is relevant because of its immense power to deliver useful solutions; its other building blocks including cloud computing and superfast connectivity. But, if you want to take advantage of this novel technology you will need a reliable, secure, and continuously evolving infrastructure.